精英家教网 > 高中数学 > 题目详情

已知椭圆E:+y2=1(a>1)的上顶点为M(0,1),两条过M的动弦MA、MB满足MA⊥MB.

(1)当坐标原点到椭圆E的准线距离最短时,求椭圆E的方程;

(2)若Rt△MAB面积的最大值为,求a;

(3)对于给定的实数a(a>1),动直线AB是否经过一定点?如果经过,求出定点坐标(用a表示);反之,说明理由.

 

(1)+y2=1.(2)a=3(3)

【解析】(1)由题,a2=c2+1,d==c+≥2,当c=1时取等号,此时a2=1+1=2,故椭圆E的方程为+y2=1.

(2)不妨设直线MA的斜率k>0,直线MA方程为y=kx+1,由

①代入②整理得(a2k2+1)x2+2a2kx=0,

解得xA=-,故A

由MA⊥MB知直线MB的斜率为-,可得B

则MA=,MB=.

则S△MAB=MA·MB=(1+k2)

.

令k+=t(t≥2),

则S△MAB=.

当t=时取“=”,∵t=≥2,得a>+1.而(S△MAB)max=,故a=3或a=(舍).综上a=3.

(3)由对称性,若存在定点,则必在y轴上.

当k=1时,A,直线AB过定点Q.下面证明A、Q、B三点共线:

∵kAQ=

kBQ=.

由kAQ=kBQ知A、Q、B三点共线,即直线AB过定点Q.

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第5课时练习卷(解析版) 题型:填空题

直线y=kx+3与圆(x-2)2+(y-3)2=4相交于M,N两点,若MN≥2,则k的取值范围是________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第3课时练习卷(解析版) 题型:解答题

已知△ABC的两个顶点A(-1,5)和B(0,-1),又知∠C的平分线所在的直线方程为2x-3y+6=0,求三角形各边所在直线的方程.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第3课时练习卷(解析版) 题型:解答题

两条直线l1:(m+3)x+2y=5-3m,l2:4x+(5+m)y=16,分别求满足下列条件的m的值.

(1) l1与l2相交;

(2) l1与l2平行;

(3) l1与l2重合;

(4) l1与l2垂直.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第11课时练习卷(解析版) 题型:解答题

已知椭圆C的方程为=1(a>b>0),双曲线=1的两条渐近线为l1、l2,过椭圆C的右焦点F作直线l,使l⊥l1.又l与l2交于P点,设l与椭圆C的两个交点由上至下依次为A、B(如图).

(1)当l1与l2夹角为60°,双曲线的焦距为4时,求椭圆C的方程;

(2)当=λ,求λ的最大值.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第11课时练习卷(解析版) 题型:解答题

在平面直角坐标系xOy中,已知定点A(-4,0)、B(4,0),动点P与A、B连线的斜率之积为-.

(1)求点P的轨迹方程;

(2)设点P的轨迹与y轴负半轴交于点C.半径为r的圆M的圆心M在线段AC的垂直平分线上,且在y轴右侧,圆M被y轴截得的弦长为r.

(ⅰ)求圆M的方程;

(ⅱ)当r变化时,是否存在定直线l与动圆M均相切?如果存在,求出定直线l的方程;如果不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第11课时练习卷(解析版) 题型:解答题

如图,椭圆C:=1(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为.不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.

(1)求椭圆C的方程;

(2)求△ABP面积取最大值时直线l的方程.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第10课时练习卷(解析版) 题型:解答题

如图,在平面直角坐标系xOy中,已知椭圆=1的左、右顶点为A、B,右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.

(1)设动点P满足PF2-PB2=4,求点P的轨迹;

(2)设x1=2,x2=,求点T的坐标;

(3)设t=9,求证:直线MN必过x轴上的一定点(其坐标与m无关).

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年陕西西工大附中高三上学期第四次适应性训练文数学卷(解析版) 题型:填空题

正方体的外接球与内切球的表面积的比值为_______.

 

查看答案和解析>>

同步练习册答案