精英家教网 > 高中数学 > 题目详情
19.已知点M(-$\sqrt{3}$,0),N($\sqrt{3}$,0),若椭圆C:$\frac{{x}^{2}}{a}$+y2=1存在点P使|PM|-|PN|=2$\sqrt{2}$,则a的取值范围是(  )
A.(0,1)B.(1,+∞)C.[2,+∞)D.[$\sqrt{2}$,+∞)

分析 由已知得椭圆C:$\frac{{x}^{2}}{a}$+y2=1与双曲线$\frac{{x}^{2}}{2}-{y}^{2}$=1(x≥$\sqrt{2}$)有交点,由此能求出结果.

解答 解:∵M(-$\sqrt{3}$,0),N($\sqrt{3}$,0),椭圆C:$\frac{{x}^{2}}{a}$+y2=1存在点P使|PM|-|PN|=2$\sqrt{2}$,
∴椭圆C:$\frac{{x}^{2}}{a}$+y2=1与双曲线$\frac{{x}^{2}}{2}-{y}^{2}$=1(x≥$\sqrt{2}$)有交点,
联立$\left\{\begin{array}{l}{\frac{{x}^{2}}{{a}^{2}}+{y}^{2}=1}\\{\frac{{x}^{2}}{2}-{y}^{2}=1,(x≥\sqrt{2})}\end{array}\right.$,得x2=$\frac{4{a}^{2}}{2+{a}^{2}}$,
∵椭圆C:$\frac{{x}^{2}}{a}$+y2=1与双曲线$\frac{{x}^{2}}{2}-{y}^{2}$=1(x≥$\sqrt{2}$)有交点,
∴x2=$\frac{4{a}^{2}}{2+{a}^{2}}$≥2,解得a$≥\sqrt{2}$,
∴a的取值范围是[$\sqrt{2},+∞$).
故选:D.

点评 本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意双曲线、椭圆性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设函数$f(x)=4sin({ωx+\frac{π}{3}})({ω>0})$的最小正周期为π,设向量$\overrightarrow a=({-1,f(x)})$,$\overrightarrow b=({f({-x}),1})$,$g(x)=\overrightarrow a•\overrightarrow b$.
(1)求函数f(x)的递增区间;
(2)求函数g(x)在区间$[{\frac{π}{8},\frac{π}{3}}]$上的最大值和最小值;
(3)若x∈[0,2016π],求满足$\overrightarrow a⊥\overrightarrow b$的实数x的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.以下命题:
①若x≠1或y≠2,则x+y≠3;
②若空间向量$\overrightarrow{OA}$,$\overrightarrow{OB}$与空间中任一向量都不能组成空间的一组基底,则$\overrightarrow{OA}$与$\overrightarrow{OB}$共线;
③命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”;
④若A、B为两个定点,K为正常数,若|PA|+|PB|=K,则动点P的轨迹是椭圆;
⑤已知抛物线y2=2px,以过焦点的一条弦AB为直径作圆,则此圆与准线相切.
其中真命题有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ex-ax
(1)若函数f(x)在x=1处取得极值,求函数y=f(x)在点(0,f(0))处的切线方程;
(2)当x≥0,f(x)-f(-x)≥0恒成立,求a的最大值;
(3)当a=1,解关于x的不等式:$\left\{\begin{array}{l}{f(x)≤f(1)}\\{f(-x)≤f(1)}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知曲线$\frac{{x}^{2}}{3-k}$+$\frac{{y}^{2}}{k+1}$=1(k∈R)表示焦点在y轴上的椭圆,则k的取值范围是(  )
A.(-∞,1)∪(3,+∞)B.(-∞,3)C.(1,+∞)D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$e=\frac{{\sqrt{2}}}{2}$,焦距为2.
(1)求椭圆C的方程;
(2)抛物线y2=2px(p>0)的焦点和椭圆的右焦点重合,过右焦点作斜率为1的直线交椭圆于A,B,交抛物线于C,D,求△OAB和△OCD面积之比(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左右顶点分别为A、B,左右焦点分别为F1、F2,若|AF1|,|F1F2|,|F1B|成等差数列,则此椭圆的离心率为(  )
A.$\sqrt{5}-2$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知焦点在x轴上的椭圆过点A(-3,0),且离心率e=$\frac{{\sqrt{5}}}{3}$,则椭圆的标准方程是(  )
A.$\frac{x^2}{9}+\frac{y^2}{{\frac{81}{4}}}$=1B.$\frac{x^2}{4}+\frac{y^2}{9}$=1C.$\frac{x^2}{{\frac{81}{4}}}+\frac{y^2}{9}$=1D.$\frac{x^2}{9}+\frac{y^2}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.从装有2个红球和2个白球的袋内任取两球,下列每对事件中是互斥事件的是(  )
A.至少有一个白球;都是白球B.恰好有一个白球;恰好有两个白球
C.至少有一个白球;至少有一个红球D.至多有一个白球;都是红球

查看答案和解析>>

同步练习册答案