精英家教网 > 高中数学 > 题目详情
3.如图所示是函数y=2sin(ωx+φ)(|φ|≤$\frac{π}{2}$,ω>0)的一段图象,则f($\frac{π}{3}$)=1.

分析 由图象得到函数周期,利用周期公式求得ω,由五点作图的第一点求得φ的值,从而可求函数解析式,利用特殊角的三角函数值即可求值得解.

解答 解:∵由图可知,T=$\frac{11π}{12}$-(-$\frac{π}{12}$)=π.
∴ω=$\frac{2π}{T}$=$\frac{2π}{π}$=2;
∵由五点作图第一点知,2×(-$\frac{π}{12}$)+φ=0,得φ=$\frac{π}{6}$.
∴y=2sin(2x+$\frac{π}{6}$),
∴f($\frac{π}{3}$)=2sin(2×$\frac{π}{3}$+$\frac{π}{6}$)=2sin$\frac{5π}{6}$=1.
故答案为:1.

点评 本题考查了由y=Asin(ωx+φ)的部分图象求解函数解析式,关键是掌握由五点作图的某一点求φ,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.计算:(1-2i)-(2-3i)十(3-4i)-(4-5i)+…+(2011-2012i)-(2012-2013i).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$离心率$e=\frac{{\sqrt{3}}}{2}$,短轴长为2.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ) 设直线l过椭圆C的右焦点,并与椭圆相交于E,F两点,截得的弦长为$\frac{5}{2}$,求直线l的方程;
(Ⅲ) 如图,椭圆左顶点为A,过原点O的直线(与坐标轴不重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于M,N两点.试问:以MN为直径的圆是否经过定点(与直线PQ的斜率无关)?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,梯形ABCD所在平面与以AB为直径的圆所在平面垂直,O为圆心,AB∥CD,∠BAD=90°,AB=2CD.若点P是⊙O上不同于A,B的任意一点.
(Ⅰ)求证:BP⊥平面APD;
(Ⅱ)设平面BPC与平面OPD的交线为直线l,判断直线BC与直线l的位置关系,并加以证明;
(Ⅲ)求几何体DOPA与几何体DCBPO的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在等比数列{an}中,已知a4=27a3,则$\frac{{a}_{2}}{{a}_{1}}$+$\frac{{a}_{4}}{{a}_{2}}$+$\frac{{a}_{6}}{{a}_{3}}$+…+$\frac{{a}_{2n}}{{a}_{n}}$等于(  )
A.$\frac{{3}^{-n}-3}{2}$B.$\frac{{3}^{1-n}-3}{2}$C.$\frac{{3}^{n}-3}{2}$D.$\frac{{3}^{n+1}-3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,矩形ABCD中,BC=2,AB=1,PA⊥平面ABCD,BE∥PA,BE=$\frac{1}{2}$PA,F为PA的中点.
(1)求证:PC∥平面BDF.
(2)记四棱锥C-PABE的体积为V1,三棱锥P-ACD的体积为V2,求$\frac{V_1}{V_2}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,-3).若向量$\overrightarrow{c}$满足$\overrightarrow{c}$⊥($\overrightarrow{a}$+$\overrightarrow{b}$),且$\overrightarrow{b}$∥($\overrightarrow{a}$-$\overrightarrow{c}$),则$\overrightarrow{c}$=(  )
A.$(\frac{7}{9},\frac{7}{3})$B.$(-\frac{7}{9},\frac{7}{3})$C.$(\frac{7}{9},-\frac{7}{3})$D.$(-\frac{7}{9},-\frac{7}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知全集U=R,集合A={x|x<-1或x>4),B={x|-2≤x≤3),那么阴影部分表示的集合为(  )
A.{x|-2≤x<4}B.{x|x≤3或x≥4}C.{x|-2≤x≤一1}D.{x|-1≤x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.关于x的方程x3-x2-x+m=0,至少有两个不相等的实数根,则m的最小值为$-\frac{5}{27}$.

查看答案和解析>>

同步练习册答案