精英家教网 > 高中数学 > 题目详情
某批发点1月份销售商品情况如表:
商品名称批发数量/件每件批发价/元每件成本价/元
A商品10003.02.5
B商品1500108
C商品120064
则该批发点A商品的批发利润率为
 
;该批发点1月份的利润为
 
元.
考点:频率分布表
专题:应用题
分析:(1)根据利润率=
利润
成本
,求出A商品的批发利润率;
(2)根据利润=收入-成本,求出1月份的批发利润.
解答: 解:(1)该批发点A商品的批发利润率为
3-2.5
2.5
=0.2=20%;
(2)该批发点1月份的利润为
1000×(3.0-2.5)+1500×(10-8)+1200×(6-4)
=500+3000+2400
=5900元.
故答案为:20%,5900.
点评:本题考查了商品的利润与利润率的应用问题,是基础题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知一个几何体的三视图如图所示,根据图中尺寸可得该几何体的体积为(  )
A、36πB、24π
C、15πD、12π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
,点(n,2an+1-an)在直线上y=x上,其中n=1,2,3…
(1)令bn=an-1-an-3,求证数列{bn}是等比数列;
(2)求数列{an}的通项;
(3)设Sn,Tn分别为数列{an},{bn}的前n项和,是否存在实数λ,使得数列{
SnTn
n
}为等差数列存在,试求出λ,不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax+2,当x0∈[1,+∞)时,恒有f(x0)>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知|
OA
|=2,|
OB
|=1,|
OC
|=4,且
OA
OB
的夹角为120°,
OA
OC
的夹角为30°,用
OA
OB
表示
OC

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体三视图如图所示,其中三角形的三边长与圆的直径均为2,则该几何体体积为(  )
A、
32+8
3
3
π
B、
32+
3
3
π
C、
4+3
3
3
π
D、
4+
3
3
π

查看答案和解析>>

科目:高中数学 来源: 题型:

平行四边形ABCD中,∠CBA=120°,AD=4,对角线BD=2
3
,将其沿对角线BD折起,使平面ABD⊥平面BCD,若四面体ABCD顶点在同一个球面上,则该球的体积为(  )
A、
20
3
5
π
B、
160
3
5
π
C、32
3
π
D、2π

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,且Sn=-2n2+4n,数列{bn}为单调递增的等比数列,b1b2b3=27,a1+b1=a3+b3
(1)求数列{an}、{bn}的通项公式;
(2)设cn=a2n+b2n,求数列{cn}的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3-3x2+3x(a>0),求f(x)的单调区间.

查看答案和解析>>

同步练习册答案