精英家教网 > 高中数学 > 题目详情
5.△ABC中,角A,B,C的对边分别为a,b,c,B=2A,a=1,b=$\frac{4}{3}$,则△ABC一定是(  )
A.锐角三角形B.直角三角形C.钝角三角形D.不能确定

分析 先根据正弦定理以及二倍角公式,求出cosA=$\frac{2}{3}$,再根据余弦函数的单调性求出A>$\frac{π}{4}$,继而得到∠B为钝角,问题得以解决.

解答 解:∵B=2A,a=1,b=$\frac{4}{3}$,
由正弦定理,得到$\frac{a}{sinA}$=$\frac{b}{sinB}$,
∴$\frac{1}{sinA}$=$\frac{\frac{4}{3}}{sin2A}$,
∴4sinA=3sin2A=3×2sinAcosA,
∴cosA=$\frac{2}{3}$<$\frac{\sqrt{2}}{2}$=cos$\frac{π}{4}$,
∴A>$\frac{π}{4}$
∴2B>$\frac{π}{2}$,
∴∠B为钝角,
∴则△ABC一定是钝角三角形,
故选:C.

点评 本题考查了正弦定理以及余弦函数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在平行四边形ABCD中,∠A=60°,AB=2,AD=4,点E,F分别为边AD,BC的中点,将△ABE沿BE边折起,形成四棱锥A′-BCDE.如图所示.
(1)当∠A′BC的余弦值为何值时,平面A′BE⊥平面BCDE?
(2)当G为A′D的中点时,求证:A′F∥平面EGC;
(3)在(1)的前提下,求二面角A′-DE-B的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.三棱柱ABC-ABC中,AA1⊥面A1B1C1,且AC=AB=1,∠BAC=90°,E,F分别为BC,CC1的中点,A1F与平面ABC所成的角为45°.
(1)求三棱锥A1-B1EF的体积;
(2)求二面角E-A1B1-F的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,若${\overrightarrow{AB}}^{2}$>$\overrightarrow{AB}$•$\overrightarrow{AC}$+$\overrightarrow{BA}$•$\overrightarrow{BC}$+$\overrightarrow{CA}$•$\overrightarrow{CB}$,则△ABC是(  )
A.不等边三角形B.三条边不全等的三角形
C.锐角三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设集合A={x|x2-2x-3<0},B={x|y=lnx},则A∩B=(  )
A.(0,3)B.(0,2)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,a,b∈R,F1,F2分别为双曲线的左右焦点,O为坐标原点,点P为双曲线上一点满足|OP|=3a,且|PF1|,|F1F2|,|PF2|成等比数列,则此双曲线的离心率为(  )
A.$\frac{\sqrt{21}}{3}$B.$\frac{7}{3}$C.$\frac{2\sqrt{7}}{3}$D.$\frac{7\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=1-|2x-3|,g(x)=$\sqrt{x}$-$\sqrt{x-a}$.
(1)求不等式f(x)≥3x+1的解集;
(2)若0<a<b,M=g(a+b),N=g(b),求证:M<N.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点P到点F($\frac{1}{4}$,0)的距离比它到直线m:4x+9=0的距离小2,记动点P的轨迹为M,坐标原点为O
(Ⅰ)求轨迹M的方程;
(Ⅱ)是否存在过点Q(1,0)的直线l,使|OQ|是l与曲线M的两个交点A、B到原点的距离|OA|、|OB|的等比中项?若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某电视台组织一科普竞赛,竞赛规则规定:答对第一,二,三个问题分别得100分,100分,200分,答错得零分.假设甲同学答对第一,二,三个问题的槪率分別为$\frac{4}{5}$,$\frac{3}{4}$,$\frac{3}{5}$且各题答对与否之问无影响.求:
(Ⅰ)甲同学得300分的槪率;
(Ⅱ)记甲同学竞赛得分为ξ,求ξ的分布列;
(Ⅲ)如果每得100分,即可获得1000元公益基金.依据甲同学得分的平均值预计其所得的得的公益基金数.

查看答案和解析>>

同步练习册答案