| A. | $f(x)=x,g(x)=\frac{{{x^2}-x}}{x-1}$ | B. | $f(x)=x,g(x)=\sqrt{x^2}$ | ||
| C. | f(x)=x2,g(x)=(x+1)2 | D. | $f(x)=x,g(x)=\root{3}{x^3}$ |
分析 根据两个函数的定义域相同,对应关系也相同,即可判断两个函数是同一函数.
解答 解:对于A,函数f(x)=x(x∈R),与g(x)=$\frac{{x}^{2}-x}{x-1}$=x(x≠1)的定义域不同,不是同一函数;
对于B,函数f(x)=x,与g(x)=$\sqrt{{x}^{2}}$=|x|的对应关系不相同,不是同一函数;
对于C,函数f(x)=x2(x∈R),与g(x)=(x+1)2(x∈R)的对应关系不同,不是同一函数;
对于D,函数f(x)=x(x∈R),与g(x)=$\root{3}{{x}^{3}}$=x(x∈R)的定义域相同,对应关系也相同,是同一函数.
故选:D.
点评 本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{15}{4}$ | B. | $\frac{15}{2}$ | C. | 15 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,+∞) | B. | [0,2] | C. | (-∞,2] | D. | [1,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 甲 | 乙 | 丙 | 丁 | |
| $\overline{x}$ | 7 | 8 | 8 | 6 |
| s2 | 6.3 | 6.3 | 7 | 8.7 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com