精英家教网 > 高中数学 > 题目详情
已知f(x)是函数,
(1)若f(
x
+1)=x+2
x
,求f(x).
(2)若函数f(x)满足2f(x)+f(
1
x
)=x,求f(x).
考点:函数解析式的求解及常用方法
专题:换元法,函数的性质及应用
分析:(1)用换元法,设
x
+1=t,求出
x
,表示出f(t),即得f(x);
(2)由2f(x)+f(
1
x
)=x①,得2f(
1
x
)+f(x)=
1
x
②;由①、②求出f(x)的解析式.
解答: 解:(1)设
x
+1=t,∴
x
=t-1(t≥1);
又∵f(
x
+1)=x+2
x

∴f(t)=(t-1)2+2(t-1)=t2-1,
即f(x)=x2-1(x≥1);
(2)∵2f(x)+f(
1
x
)=x①,
∴2f(
1
x
)+f(x)=
1
x
②;
①×2-②得,
3f(x)=2x-
1
x

∴f(x)=
2x
3
-
1
3x
点评:本题考查了用换元法求函数解析式的问题,解题时应根据题意,设出适当地“元”,从而求出函数的解析式,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=x2+bx在点A(1,f(1))处的切线方程为3x-y-1=0,设数列{
1
f(n)
}的前n项和Sn,则S2011为(  )
A、
2008
2009
B、
2009
2010
C、
2010
2011
D、
2011
2012

查看答案和解析>>

科目:高中数学 来源: 题型:

点M到点F(4,0)的距离比它到直线l:x+6=0的距离小于2.求点M的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a=3,b=5,∠C=120°,求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

经过点M(2,1)作直线L,交椭圆
x2
16
+
y2
4
=1于A、B两点.如果点M恰好为线段AB的三等分点,求直线L的方程.(用普通方法求解,不用参数方程)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ksin(ωx+φ),(k>0,ω>0,|φ|<
π
2
)的一系列对应值如下表:
x -
π
6
π
3
6
3
11π
6
3
17π
6
y -2 0 2 0 -2 0 2
(1)根据表格提供的数据求函数f(x)的解析式;
(2)设△ABC的内角A,B,C的对边分别为a,b,c,根据(1)的结果,若f(
A
2
)=-1,且a=2,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c为互不相等的非负数.求证:a2+b2+c2
abc
a
+
b
+
c
).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠ABC=90°,∠A=30,斜边AC上的中线BD=2,现沿BD将△BCD折起成三棱锥C-ABD,已知G是线段BD的中点,E,F分别是CG,AG的中点.

(1)求证:EF∥平面ABC;
(2)三棱锥C-ABD中,若棱AC=
10
,求三棱锥A一BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a-
1
a
=3,求a2+
1
a2
的值.

查看答案和解析>>

同步练习册答案