精英家教网 > 高中数学 > 题目详情

(本小题满分14分)设函数

(1)求函数的单调区间;

(2)已知,)是函数的图象上的任意两点,且满足,求a的最大值;

(3)设,若对于任意给定的,方程内有两个不同的实数根,求a的取值范围.(其中是自然对数的底数)

 

(1)函数的单调递增区间是;递减区间是;(2)3

(3).

【解析】

试题分析:(1)函数在某个区间内可导,则若,则在这个区间内单调递增,若,则在这个区间内单调递减;(2)利用导数方法证明不等式在区间上恒成立的基本方法是构造函数,然后根据函数的单调性,或者函数的最值证明函数,其中一个重要的技巧就是找到函数在什么地方可以等于零,这往往就是解决问题的一个突破口,观察式子的特点,找到特点证明不等式;(3))对于恒成立的问题,常用到两个结论:(1),(2),(4)解决含有参数的单调性的问题,要注意分类讨论和数形结合的思想.

试题解析:(1), 1分

,得,该方程的判别式△=

可知方程有两个实数根,又,故取

时,,函数单调递增;当时,,函数单调递减.

则函数的单调递增区间是;递减区间是. 3分

(2)不妨设,不等式转化为

,可知函数在区间上单调递减,故恒成立,

恒成立,即恒成立. 5分

时,函数单调递增,故当时,函数取得最小值3,则实数的取值范围是,则实数的最大值为3. 7分

(3),当时,是增函数;当时,是减函数.可得函数在区间的值域为. 9分

,则

,结合(1)可知,方程上有一个实数根,若,则上单调递增,不合题意,可知有唯一的解,且上单调递增;在上单调递减. 10分

因为,方程内有两个不同的实数根,所以,且. 11分

,即,解得

,即

因为,所以,代入,得

,可知函数上单调递增,而,则

所以,而时单调递增,可得

综上所述,实数的取值范围是 14分.

考点:1、利用导数求函数的单调区间;2、利用导数求函数的最值;3、方程根的个数.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015届宁夏高三上学期期中考试理科数学试卷(解析版) 题型:选择题

设函数,曲线在点处的切线方程为,则曲线在点处切线的斜率是

A.4 B. C.2 D.

 

查看答案和解析>>

科目:高中数学 来源:2015届天津市高三上学期零月月考理科数学试卷(解析版) 题型:填空题

的直角边AB为径作圆O,圆O与斜边AC交于D,过D作圆O的切线与BC交于E,若BC=3,AB=4,则OE= .

 

 

查看答案和解析>>

科目:高中数学 来源:2015届天津市高三上学期零月月考文科数学试卷(解析版) 题型:填空题

已知圆C的圆心与抛物线的焦点关于直线y=x对称,直线4x-3y-2=0与圆C相交于A,B两点,且,则圆C的标准方程为: .

 

查看答案和解析>>

科目:高中数学 来源:2015届天津市高三上学期零月月考文科数学试卷(解析版) 题型:选择题

已知是定义在上的偶函数,且在上是增函数,设

,则的大小关系是( )

A.c<b<a B.b<c<a C.b<a<c D.a<b<c

 

查看答案和解析>>

科目:高中数学 来源:2015届四川省资阳市高三第一次诊断性测试理科数学试卷(解析版) 题型:解答题

(本小题满分12分)

在各项均为正数的等比数列中,,且成等差数列.

(1)求等比数列的通项公式;

(2)若数列满足,求数列的前n项和的最大值.

 

查看答案和解析>>

科目:高中数学 来源:2015届四川省资阳市高三第一次诊断性测试理科数学试卷(解析版) 题型:选择题

已知函数,则下列不等式正确的是

(A)x1>x2 (B)x1<x2

(C)x1+x2<0 (D)x1+x2>0

 

查看答案和解析>>

科目:高中数学 来源:2015届四川省资阳市高三第一次诊断性测试文科数学试卷(解析版) 题型:填空题

△ABC中,角A,B,C的对边分别为a,b,c,已知b=8,c=6,a=4,D为边BC的中点,则|AD|=___________.

 

查看答案和解析>>

科目:高中数学 来源:2015届四川省绵阳市高三一诊测试文科数学试卷(解析版) 题型:填空题

已知函数f (x)=, 则f ()+f ()+f ()+…+f ()=________.

 

查看答案和解析>>

同步练习册答案