精英家教网 > 高中数学 > 题目详情
函数y=Asin(ωx+ϕ)(其中A>0,ω>0,0<ϕ<π)在一个周期内的图象如下
(1)求函数的解析式;
(2)求函数的单调增区间.
考点:由y=Asin(ωx+φ)的部分图象确定其解析式,正弦函数的单调性
专题:三角函数的图像与性质
分析:(1)直接由函数图象得到A和函数的半周期,由周期公式求得ω,再由五点作图的第二点求得φ,则函数解析式可求.
(2)根据正弦函数的单调性,构造不等式,解不等式可得函数的单调增区间.
解答: 解:(1)由图可知,A=2,
T
2
=
12
-(-
π
12
)=
π
2

∴T=π,
又∵ω>0,
∴ω=2.
由五点作图的第二点得,2×(-
π
12
)+φ=
π
2

解得:φ=
3

∴函数解析式为:y=2sin(2x+
3

(2)由2x+
3
∈[-
π
2
+2kπ,
π
2
+2kπ](k∈Z)得:
x∈[-
12
+kπ,-
π
12
+kπ](k∈Z),
故函数的单调增区间为:[-
12
+kπ,-
π
12
+kπ](k∈Z)
点评:本题考查利用y=Asin(ωx+φ)的部分图象求函数解析式,关键是掌握运用五点作图的某一点求φ,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,△ABO是以AB为斜边的等腰直角三角形,OD⊥平面ABO,BC∥OD,且OD=2BC=2OA=2,E是AD中点,
(Ⅰ)求证:CE∥平面ABO;
(Ⅱ)求三棱锥E-ABC的体积VE-ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:|x2-6|≥6,q:x∈z,且“p∧q”与“?q”同时为假命题,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)已知log189=a,18b=5,试用a、b表示log1845的值;
(Ⅱ)已知log147=a,log145=b,用a、b表示log3528.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:(1)
3(-4)3
-(
1
2
)0+0.25
1
2
×(
2
)4

(2)lg4+lg25+4-
1
2
-(4-π)0

查看答案和解析>>

科目:高中数学 来源: 题型:

解下列不等式:
(1)x2-(a+1)x+a<0(其中a≠1);
(2)
2
x-1
>x.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-2
-
x+2
,判断f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=kx(k≠0)是曲线y=xex的切线,则k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|2x2-5x-3=0},B={x|mx=1}且B⊆A,则实数m的取值集合为
 
.(用列举法表示)

查看答案和解析>>

同步练习册答案