| A. | $\frac{99}{202}$ | B. | $\frac{25}{51}$ | C. | $\frac{100}{101}$ | D. | $\frac{51}{101}$ |
分析 利用等差数列的通项公式及其前n项和公式可得an,再利用“裂项求和”即可得出.
解答 解:设等差数列{an}的公差为d,
∵a4=5,S5=20,
∴$\left\{\begin{array}{l}{{a}_{1}+3d=5}\\{5{a}_{1}+\frac{5×4}{2}•d=20}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=2}\\{d=1}\end{array}\right.$.
∴an=2+(n-1)=n+1.
∴$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}-\frac{1}{n+2}$.
∴数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前100项和S100=$(\frac{1}{2}-\frac{1}{3})$+$(\frac{1}{3}-\frac{1}{4})$+…+$(\frac{1}{101}-\frac{1}{102})$
=$\frac{1}{2}-\frac{1}{102}$
=$\frac{25}{51}$.
故选:B.
点评 本题考查了等差数列的通项公式及其前n项和公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3π}{2}+\sqrt{3}$ | B. | $\frac{{2π+\sqrt{3}}}{3}$ | C. | $\frac{π}{6}+\frac{{\sqrt{3}}}{2}$ | D. | $\sqrt{3}$+π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com