精英家教网 > 高中数学 > 题目详情
17.已知直线l,m和平面α,β(  )
A.若l∥α,l∥β,则α∥βB.若l∥α,m∥α,则l∥mC.若l⊥α,m⊥β,则l∥mD.若l⊥α,l⊥β,则α∥β

分析 根据线面平行的几何特征及面面平行的判定方法,可判断A;
若l∥α,m∥α,则l与m平行,异面或相交,可判断B;
若l⊥α,m⊥β,α∥β,则l∥m,可判断C;
根据面面平行的判定方法及线面垂直的几何特征,可判断D.

解答 解:若l∥α,l∥β,则平面α,β可能相交,此时交线与l平行,故A错误;
若l∥α,m∥α,则l与m平行,异面或相交,故B错误;
若l⊥α,m⊥β,α∥β,则l∥m,故C错误;
若l⊥α,l⊥β,根据垂直于同一直线的两个平面平行,可得D正确,
故选:D.

点评 本题考查的知识点是空间中直线与直线的位置关系,直线与平面的位置关系及平面与平面之间的位置关系,熟练掌握空间线面关系的几何特征及判定方法是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知a∈{-2,0,1,3,4},b∈{1,2},则函数f(x)=(a2-2)x+b为增函数的概率是(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{1}{2}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知复数w满足w-4=(3-2w)i,z=5÷w+|w-2|.求w、z的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一简单组合体的三视图如图,则该组合体的表面积为(  )
A.38B.38-2πC.38+2πD.12-π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知O、A、B三地在同一水平面内,A地在O地正东方向2km处,B地在O地正北方向2km处,某测绘队员在A、B之间的直线公路上任选一点C作为测绘点,用测绘仪进行测绘,O地为一磁场,距离其不超过$\sqrt{3}$km的范围内会测绘仪等电子仪器形成干扰,使测量结果不准确,则该测绘队员能够得到准确数据的概率是(  )
A.1-$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{2}$C.1-$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设a=${∫}_{0}^{2}$xdx,则二项式(ax-$\frac{1}{\sqrt{x}}$)5展开式中含x2项的系数是(  )
A.80B.640C.-160D.-40

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在区间[0,2]上随机取一个实数x,若事件“3x-m<0”发生的概率为$\frac{1}{6}$,则实数m=(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,其中向量$\overrightarrow{a}$=(2cosx,$\sqrt{3}$cosx),$\overrightarrow{b}$=(cosx,2sinx).
(Ⅰ)求函数f(x)的最小正周期和在[0,π]上的单调递增区间;
(Ⅱ)△ABC中,角A,B,C的对边分别为a,b,c,且a2+b2-c2≥ab,求f(C)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知抛物线y=ax2(a>0)上两个动点A、B(不在原点),满足$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,若存在定点M,使得$\overrightarrow{OM}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,且λ+μ=1,则M坐标为 (  )
A.({0,-a})B.({0,a})C.($\frac{1}{a}$,0})D.(0,$\frac{1}{a}$)

查看答案和解析>>

同步练习册答案