| A. | 720种 | B. | 600种 | C. | 360种 | D. | 300种 |
分析 根据题意,分2种情况讨论,①只有甲乙其中一人参加,②甲乙两人都参加,分别求出每一种情况下的情况数目,再由加法原理计算可得答案.
解答 解:根据题意,分2种情况讨论,
①、若甲乙其中一人参加,需要从剩余5人中选取3人,
从甲乙中任取1人,有2种情况,
在剩余5人中任取3人,有C53=10种情况,
将选取的4人,进行全排列,有A44=24种情况,
则此时有2×10×24=480种情况;
②、若甲乙两人都参加,
需要从剩余5人中选取2人,有C52=10种选法,
将甲乙和选出的2人,进行全排列,有A44=24种情况,
则甲乙都参加有10×24=240种情况,
其中甲乙相邻的有C52A44A22A33=120种情况;
则甲乙两人都参加且不相邻的情况有240-120=120种;
则不同的发言顺序种数480+120=600种,
故选:B.
点评 本题考查排列、组合知识,此类问题需要注意常见问题的处理方法,如相邻问题用捆绑法等,本题的关键是根据题意正确进行分类讨论.
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (kπ,kπ+$\frac{π}{2}$)k∈Z | B. | (kπ+$\frac{π}{2}$,kπ+π)k∈Z | C. | (2kπ,2kπ+π)k∈Z | D. | (2kπ,2kπ+2π)k∈Z |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2$\sqrt{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x≥1} | B. | {x|1≤x<2} | C. | {1} | D. | {0,1} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8\sqrt{2}π}{3}$ | B. | $\frac{16\sqrt{2}π}{3}$ | C. | 4$\sqrt{2}π$ | D. | 8$\sqrt{2}π$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{8}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com