精英家教网 > 高中数学 > 题目详情
9.设离散型随机变量X的分布列为:
X1234
P$\frac{1}{6}$$\frac{1}{3}$$\frac{1}{6}$p
则p的值为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{6}$

分析 根据分布列概率和为1求得p.

解答 解∵$\frac{1}{6}+\frac{1}{3}+\frac{1}{6}+p=1$.
∴$p=\frac{1}{3}$.
故选C.

点评 考查分布列基本性质.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>1),F1,F2为椭圆的两个焦点,且F1,F2到直线$\frac{x}{a}$$+\frac{y}{b}$=1的距离之和为$\sqrt{3}$b,则其离心率e=$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若tanθ=$\sqrt{3}$,则$\frac{sin2θ}{1+cos2θ}$=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设a1,a2,a3为正数,求证:$\frac{{a}_{1}{a}_{2}}{{a}_{3}}$+$\frac{{a}_{2}{a}_{3}}{{a}_{1}}$+$\frac{{a}_{3}{a}_{1}}{{a}_{2}}$≥a1+a2+a3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为A1B1,CD的中点.
(1)求|$\overrightarrow{CE}$|
(2)求直线EC与AF所成角的余弦值;
(3)求二面角E-AF-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知正三棱柱ABC-A1B1C1的底面边长是2,D是侧棱CC1的中点,直线AD与侧BB1C1C所成的角为45°.
(1)求此正三棱柱的侧棱长;
(2)求二面角A-BD-C的平面角的正切值;
(3)求点C到平面ABD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}满足点{an,an+1)在直线y=2x+1上,且a1=1.
(1)求数列{an}的通项公式an和Sn
(2)若bn=(an+1)log${\;}_{\frac{1}{2}}$(an+1),(n∈N*),设数列{bn}的前n项和为Tn,求使Tn+n•2n+1>50成立的正整数n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)-f(x)≤0.对任意正数a,b,若a<b,则必有(  )
A.bf(a)≤af(b)B.af(b)≤bf(a)C.bf(a)≤f(a)D.af(a)≤f(b)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在几何体ABCDE中,四边形ABCD是正方形,CE⊥平面ADE且CE=EF=2,F是线段DE的中点.
(I)求证:平面BCF⊥平面CDE;
(II)求二面角A-BF-E的平面角的正弦值.

查看答案和解析>>

同步练习册答案