精英家教网 > 高中数学 > 题目详情
若函数f(x)=2sin(ωx+θ)对任意x都有f(
π
6
+x)=f(
π
6
-x),则f(
π
6
)=(  )
A、2或0B、-2或2
C、0D、-2或0
考点:正弦函数的图象
专题:三角函数的图像与性质
分析:由f(
π
6
+x)=f(
π
6
-x),可得x=
π
6
是函数f(x)的对称轴,利用三角函数的性质即可得到结论.
解答: 解:∵函数f(x)=2sin(ωx+θ)对任意x都有f(
π
6
+x)=f(
π
6
-x),
∴x=
π
6
是函数f(x)的对称轴,
即此时函数f(x)取得最值,即f(
π
6
)=±2,
故选:B
点评:本题主要考查三角函数值的计算,根据三角函数的对称性是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面中,△ABC的角C的内角平分线CE分△ABC面积所成的比
S△AEC
S△BEC
=
AC
BC
.将这个结论类比到空间:在三棱锥A-BCD中,平面DEC平分二面角A-CD-B且与AB交于E,则类比的结论为
VA-CDE
VB-CDE
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
x3
3
-
a
2
x2+x+1在区间(
1
2
,3)上有极值点,则实数a的取值范围是(  )
A、(2,
5
2
B、[2,
5
2
C、(2,
10
3
D、[2,
10
3

查看答案和解析>>

科目:高中数学 来源: 题型:

以下命题中,正确的命题为(  )
A、|
a
|-|
b
|<|
a
+
b
|是
a
b
不共线的充要条件
B、(
a
b
)•
c
=
b
•(
a
b
)=(
b
c
)•
a
C、向量
a
在向量
b
方向上的射影向量的模为|
a
|•cos<
a
b
D、在四面体ABCD中,若
AB
CD
=0,
AC
BD
=0,则
AD
BC
=0

查看答案和解析>>

科目:高中数学 来源: 题型:

从{1,2,3,4,5}中随机选取一个数a,从{1,2,3}中随机选取一个数b,则关于x的方程x2+ax+b2=0有两个不相等的实根的概率是(  )
A、
1
5
B、
2
5
C、
3
5
D、
4
15

查看答案和解析>>

科目:高中数学 来源: 题型:

两圆x2+y2+6x-4y=0和x2+y2-6x+12y-19=0的位置关系是(  )
A、外切B、内切C、相交D、外离

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,D、E、F分别是△ABC各边的中点.
(1)写出图中与
DE
EF
FD
相等的向量;
(2)写出向量
DE
的相反向量;
(3)设
AD
=
a
AF
=
b
,用
a
b
表示
FD

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α的终边落在直线y=-x(x<0),表示出角α的集合,并求sinα,cosα,tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在(a-1,b)上的奇函数,当0≤x<b时,f(x)=(
1
2
x-x+a.
(1)求实数a,b的值;
(2)求函数f(x)的解析式.

查看答案和解析>>

同步练习册答案