精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3
2
sinx-
1
2
cosx,x∈R的最大值为M,最小正周期为T.
(1)求M、T;
(2)求函数的单调增区间.
考点:两角和与差的正弦函数,三角函数的周期性及其求法
专题:计算题,三角函数的求值,三角函数的图像与性质
分析:化简三角函数式,再由正弦函数的最值和周期性,即可得(1);再由正弦函数的单调增区间,即可得到(2)的答案.
解答: 解:f(x)=
3
2
sinx-
1
2
cosx=sinxcos
π
6
-cosxsin
π
6
=sin(x-
π
6
)

(1)f(x)取到最大值M为1,最小正周期为T=2π;
(2)令-
π
2
+2kπ≤x-
π
6
π
2
+2kπ,k∈z

则增区间为[-
π
3
+2kπ,
3
+2kπ]k∈z
点评:本题考查三角函数的化简和单调性、周期性和最值,考查基本的运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={x|x>-1},B={x|-2<x<2},则A∩B(  )
A、{x|x>-2}
B、{x|x>-1}
C、{x|-2<x<-1}
D、{x|-1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等差数列{an}中,a2=2,a6=6,在等比数列{bn}中,b3=4,b4=8,
(1)求an及bn
(2)设数列{an•bn}的前n项和Sn,求S5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|-2≤x≤4},B={x|x>a}.
(Ⅰ)A∩B=∅,求实数a的取值范围;
(Ⅱ)A∩B≠∅且A∩B≠A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的图象上相邻的最高点与最低点的坐标分别为(
12
,3)和(
11π
12
,-3),
求(1)求该函数的解析式
(2)若关于x的方程f(x)=a在(0,
6
)有两个不同的实数根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在公差不为0的等差数列{an}中,a1=-12,且a89,a11依次成等差数列.
(Ⅰ)求数列{an}的公差;
(Ⅱ)设Sn为数列{an}的前n项和,求Sn的最小值,并求出此时的n值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α是三角形的一个内角,且满足sinα+cosα=
1
5
,求tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知z=(1-2i)2+3i+4
(1)求z及|
.
z
+i
|;
(2)若
1+i
z
+az+b=2-i求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-(4a-2)x+4a2-4a+2,且x∈[0,3],求f(x)的最小值与最大值.

查看答案和解析>>

同步练习册答案