精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
设函数
(1)求函数的单调区间、极值;
(2)若当时,恒有,试确定的取值范围。


(1)时 , 单调递减;
单调递减;
单调递
有极小值有极大值b
(2)

解析(1)
所以,时 , 单调递减;单调递减;单调递增。有极小值有极大值b
(2) 由得:
因为所以所以上为减函数。
所以
即:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的对称轴方程;
(2)当时,若函数有零点,求m的范围;
(3)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分分)
已知是偶函数.
(Ⅰ)求实常数的值,并给出函数的单调区间(不要求证明);
(Ⅱ)为实常数,解关于的不等式:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义域为R,且对任意实数都满足不等式的所有函数组成的集合记为M,例如,函数
(1)已知函数,证明:
(2)写出一个函数,使得,并说明理由;
(3)写出一个函数,使得数列极限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
函数是定义域在(-1,1)上的奇函数,且.
(1)确定函数的解析式;
(2)用定义证明在(-1,1)上是增函数;
(3)解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分,每小问5分)
已知函数
(1)作出函数f(x)的图象;
(2)写出函数f(x)的单调区间;
(3)当时,由图象写出f(x)的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数是定义在上的增函数,对于任意的,都有,且满足.
(1)求的值;   
(2)求满足的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)设函数是定义域为R上的奇函数。
(1)求的值.
(2)若上的最小值为—2,求m的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,当恒成立的a的最小值为k,存在n个
正数,且,任取n个自变量的值

(I)求k的值;
(II)如果
(III)如果,且存在n个自变量的值,使,求证:

查看答案和解析>>

同步练习册答案