精英家教网 > 高中数学 > 题目详情
10.已知圆O:x2+y2=1和点A(-2,0),若顶点B(b,0)(b≠-2)和常数λ满足:对圆O上任意一点M,都有|MB|=λ|MA|,则λ-b=1.

分析 (Ⅰ)利用|MB|=λ|MA|,可得(x-b)2+y22(x+2)22y2,由题意,取(1,0)、(-1,0)分别代入,即可求得b、λ,可得结论.

解答 解:设M(x,y),则
∵|MB|=λ|MA|,
∴(x-b)2+y22(x+2)22y2
由题意,取(1,0)、(-1,0)分别代入可得(1-b)22(1+2)2,(-1-b)22(-1+2)2
∴b=-$\frac{1}{2}$,λ=$\frac{1}{2}$.
∴λ-b=1,
故答案为1.

点评 本题考查圆的方程,考查赋值法的运用,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.用秦九韶算法计算多项式f(x)=5x5+4x4+3x3+2x2+x+1当x=4的值时,乘法运算的次数为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知a>1,x≥1,y≥1,且loga2x+loga2y=loga(a4x4)+loga(a4y4),则loga(xy)的取值范围是[$2\sqrt{3}-2$,$4+4\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知y=x2+4ax-2在区间(-∞,4]上为减函数,则a的取值范围是(-∞,-2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知向量$\overrightarrow{a}$=(cosθ,-sinθ),$\overrightarrow{b}$=(3cosθ,sinθ),θ∈(0,π),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则θ=(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{6}$或$\frac{5π}{6}$D.$\frac{π}{3}$或$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x2-1)定义域为[0,3],则f(2x-1)的定义域为(  )
A.[1,$\frac{3}{2}$]B.[0,$\frac{9}{2}$]C.[-3,15]D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知定义在R上的函数f(x),对任意a,b∈R,都有f(a+b)=f(a)+f(b)-1,当x>0时,f(x)>1;且f(2)=3,
(1)求f(0)及f(1)的值;
(2)判断函数f(x)在R上的单调性,并给予证明;
(3)若f(-kx2)+f(kx-2)<2对任意的x∈R恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)的定义域为(-2,1),则函数f(2x-1)的定义域为(  )
A.(-$\frac{1}{2}$,1)B.(-5,1)C.($\frac{1}{2}$,1)D.(-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图:圆锥形的杯子上面放着半圆形的冰淇淋,当冰淇淋融化能否外溢不会外溢.

查看答案和解析>>

同步练习册答案