精英家教网 > 高中数学 > 题目详情
2.已知定义在R上的函数f(x),对任意a,b∈R,都有f(a+b)=f(a)+f(b)-1,当x>0时,f(x)>1;且f(2)=3,
(1)求f(0)及f(1)的值;
(2)判断函数f(x)在R上的单调性,并给予证明;
(3)若f(-kx2)+f(kx-2)<2对任意的x∈R恒成立,求实数k的取值范围.

分析 (1)令a=b=0,由题意即可求解f(0),令a=b=1,即可求解f(1).
(2)利用单调性的定义在R上任取x1、x2,设x1>x2,推出f(x1)>f(x2),得到函数f(x)在R上为单调递增;
(3)通过f(-kx2)+f(kx-2)<2对任意的x∈R恒成立,转化为kx2-kx+2>0对任意的x∈R恒成立,①当k=0时,②当k≠0时,分别求解即可.

解答 解:(1)令a=b=0,由题意可知:f(0)=f(0)+f(0)-1,即f(0)=1,
同理,令a=b=1,则有f(2)=f(1)+f(1)-1,又f(2)=3,所以f(1)=2;…(2分)
(2)在R上任取x1、x2,设x1>x2
则f(x1)=f(x1-x2)+f(x2)-1,所以f(x1)-f(x2)=f(x1-x2)-1,
又当x>0时,f(x)>1且x1-x2>0,所以f(x1-x2)>1,
所以f(x1)-f(x2)>0,即f(x1)>f(x2
故函数f(x)在R上为单调递增;…(6分)
(3)因为f(-kx2)+f(kx-2)<2对任意的x∈R恒成立,
由题意可转化为kx2-kx+2>0对任意的x∈R恒成立,…(7分)
①当k=0时,得2>0,符合题意;…(9分)
②当k≠0时,则$\left\{{\begin{array}{l}{k>0}\\{{{(-k)}^2}-8k<0}\end{array}}\right.$,解得0<k<8…(11分)
故符合题意的实数k的取值范围为0≤k<8…(12分)

点评 本题考查函数恒成立,函数的单调性以及抽象函数的应用,函数值的求法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=b•ax(a>0,且a≠1,b∈R)的图象经过点A(1,6),B(3,24).
(1)设g(x)=$\frac{1}{f(x)+3}$-$\frac{1}{6}$,确定函数g(x)的奇偶性;
(2)若对任意x∈(-∞,1],不等式($\frac{a}{b}$)x≥2m+1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)的图象如图所示,则不等式x•f(x)>0的解集为(  )
A.(-∞,-1)∪(2,+∞)B.(-∞,-1)∪(0,2)C.(-1,0)∪(2,+∞)D.(-1,0)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知圆O:x2+y2=1和点A(-2,0),若顶点B(b,0)(b≠-2)和常数λ满足:对圆O上任意一点M,都有|MB|=λ|MA|,则λ-b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数f(x)=ax4+bx2-x+1(a,b∈R),若f(2)=9,则f(-2)=13.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设a=($\frac{1}{3}$)${\;}^{\frac{2}{3}}$,b=($\frac{1}{3}$)${\;}^{\frac{1}{3}}$,c=($\frac{2}{3}$)${\;}^{\frac{1}{3}}$,则a,b,c的大小关系是(  )
A.c>b>aB.c>a>bC.a>b>cD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象与y轴的交点为($0,\frac{3}{2}$),它在y轴右侧的第一个最高点和最低点分别为(x0,3),(x0+2π,-3).
(1)求函数y=f(x)的解析式;
(2)该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到?
(3)求这个函数的单调递增区间和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.从一批土鸡蛋中,随机抽取n个得到一个样本,其重量(单位:克)的频数分布表如表:
分组(重量)[80,85)[85,90)[90,95)[95,100]
频数(个)1050m15
已知从n个土鸡蛋中随机抽取一个,抽到重量在在[90,95)的土鸡蛋的根底为$\frac{4}{19}$
(1)求出n,m的值及该样本的众数;
(2)用分层抽样的方法从重量在[80,85)和[95,100)的土鸡蛋中共抽取5个,再从这5个土鸡蛋中任取2 个,其重量分别是g1,g2,求|g1-g2|≥10概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在区间(1,+∞)上不是增函数的是(  )
A.y=-$\frac{1}{x}$B.y=-x2+2x+1C.y=$\frac{x}{1-x}$+2D.y=1+x2

查看答案和解析>>

同步练习册答案