分析 (Ⅰ)如图,连接EF.欲证明B,C,F,E四点共圆,只需推知“其一个外角等于其邻补角的内对角”(∠C=∠AEF)即可;
(Ⅱ)在直角三角形ADC中利用射影定理得到线段AD的长度;在直角三角形AED中利用勾股定理得到线段AE的长度;最后在直角三角形ADB中利用勾股定理来求线段AB的长度.
解答
解:(Ⅰ)证明:连接EF,由已知A,E,D,F四点共圆,
∴∠FAD=∠FED.
∵∠C+∠FAD=∠AEF+∠FED=90°,
∴∠C=∠AEF,
则B,C,E,F四点共圆.
(Ⅱ) 解:∵直角三角形ADC中,DF⊥AC,
∴由射影定理得:AD2=AF×AC=5×7=35.
直角三角形AED中,$AE=\sqrt{A{D^2}-D{E^2}}=\sqrt{35-{{(2\sqrt{5})}^2}}=\sqrt{15}$,
直角三角形ADB中,DE⊥AB,由射影定理得:AE×AB=AD2,
∴$AB=\frac{{A{D^2}}}{AE}=\frac{35}{{\sqrt{15}}}=\frac{{7\sqrt{15}}}{3}$.
点评 本题考查了射影定理、勾股定理.总结:直角三角形的斜边上的高是两直角边在斜边上的射影的比例中项;两条直角边分别是他们在斜边上射影与斜边的比例中项.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| $\overrightarrow x$ | $\overrightarrow y$ | $\overrightarrow w$ | $\sum_{i=1}^8{{{({x_i}-\overline x)}^2}}$ | $\sum_{i=1}^8{{{({w_i}-\overline w)}^2}}$ | $\sum_{i=1}^8{({x_i}-\overline x)({y_i}-\overline y)}$ | $\sum_{i=1}^8{({w_i}-\overline w)({y_i}-\overline y)}$ |
| 46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $210({\sqrt{6}+\sqrt{2}})$米 | B. | $140\sqrt{6}$米 | C. | $210\sqrt{2}$米 | D. | $210({\sqrt{6}-\sqrt{2}})$米 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{2}$,1) | B. | ($\frac{3}{2}$,4) | C. | ($\frac{1}{4}$,$\frac{3}{2}$) | D. | (1,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com