精英家教网 > 高中数学 > 题目详情
20.如图,AD是△ABC边BC上的高,DE⊥AB,DF⊥AC
(Ⅰ)证明:B,C,F,E四点共圆;
(Ⅱ)若AF=5,CF=2,DE=2$\sqrt{5}$,求AB的长.

分析 (Ⅰ)如图,连接EF.欲证明B,C,F,E四点共圆,只需推知“其一个外角等于其邻补角的内对角”(∠C=∠AEF)即可;
(Ⅱ)在直角三角形ADC中利用射影定理得到线段AD的长度;在直角三角形AED中利用勾股定理得到线段AE的长度;最后在直角三角形ADB中利用勾股定理来求线段AB的长度.

解答 解:(Ⅰ)证明:连接EF,由已知A,E,D,F四点共圆,
∴∠FAD=∠FED.
∵∠C+∠FAD=∠AEF+∠FED=90°,
∴∠C=∠AEF,
则B,C,E,F四点共圆.
(Ⅱ) 解:∵直角三角形ADC中,DF⊥AC,
∴由射影定理得:AD2=AF×AC=5×7=35.
直角三角形AED中,$AE=\sqrt{A{D^2}-D{E^2}}=\sqrt{35-{{(2\sqrt{5})}^2}}=\sqrt{15}$,
直角三角形ADB中,DE⊥AB,由射影定理得:AE×AB=AD2
∴$AB=\frac{{A{D^2}}}{AE}=\frac{35}{{\sqrt{15}}}=\frac{{7\sqrt{15}}}{3}$.

点评 本题考查了射影定理、勾股定理.总结:直角三角形的斜边上的高是两直角边在斜边上的射影的比例中项;两条直角边分别是他们在斜边上射影与斜边的比例中项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.将函数y=sinx+$\sqrt{3}$cosx的图象向右平移φ(φ>0)个单位,再向上平移1个单位后,所得图象经过点($\frac{π}{4}$,1),则φ的最小值为$\frac{7π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.




$\overrightarrow x$$\overrightarrow y$$\overrightarrow w$$\sum_{i=1}^8{{{({x_i}-\overline x)}^2}}$$\sum_{i=1}^8{{{({w_i}-\overline w)}^2}}$$\sum_{i=1}^8{({x_i}-\overline x)({y_i}-\overline y)}$$\sum_{i=1}^8{({w_i}-\overline w)({y_i}-\overline y)}$
46.65636.8289.81.61469108.8
表中wi=$\sqrt{x_i}$,$\overrightarrow w$=$\frac{1}{8}$$\sum_{i=1}^8{w_i}$
(1)根据散点图判断,y=a+bx与y=c+d$\sqrt{x}$哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;
(3)已知这种产品的年利润z与x,y的关系为z=0.2y-x.根据(2)的结果,当年宣传费x=49时,年销售量及年利润的预报值是多少?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为:$\widehatβ=\frac{{\sum_{i=1}^n{({u_i}-\overline u)({v_i}-\overline{v)}}}}{{\sum_{i=1}^n{{{({u_i}-\overline u)}^2}}}}$,$\widehatα=\overline v-\widehatβ\overline u$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:在C处(点C在水平地面下方,O为CH与水平地面ABO的交点)进行该仪器的垂直弹射,水平地面上两个观察点 A、B两地相距100米,∠BAC=60°,其中A到C的距离比B到C的距离远40米.A地测得该仪器在C处的俯角为∠OAC=15°,A地测得最高点H的仰角为∠HAO=30°,则该仪器的垂直弹射高度CH为(  )
A.$210({\sqrt{6}+\sqrt{2}})$米B.$140\sqrt{6}$米C.$210\sqrt{2}$米D.$210({\sqrt{6}-\sqrt{2}})$米

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知球O被互相垂直的两个平面所截,得到两圆的公共弦长为2,若两圆的半径分别为$\sqrt{3}$和3,则球O的表面积为44π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.定义在R上的函数f(x)是最小正周期为2π的偶函数,f′(x)是f(x)的导函数,当x∈[0,π]时,0<f(x)<1,当x∈(0,π)且x≠$\frac{π}{2}$时,(x-$\frac{π}{2}$)f′(x)>0,则函数y=f(x)-sinx在[-3π,π]上的零点个数为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若1<a<3,2<b<4,则$\frac{a}{b}$的范围是(  )
A.($\frac{1}{2}$,1)B.($\frac{3}{2}$,4)C.($\frac{1}{4}$,$\frac{3}{2}$)D.(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.观察数表:
1       2     3    4  …第一行
2       3     4    5  …第二行
3       4     5    6  …第三行
4       5     6    7  …第四行

第一列 第二列 第三列  第四列,
根据数表中所反映的规律,第n+1行与第m列的交叉点上的数应该是m+n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°.平面ACEF⊥平面ABCD,四边形ACEF是矩形,AF=a,点M在线段EF上.
(Ⅰ)求证:BC⊥AM;
(Ⅱ)试问当AM为何值时,AM∥平面BDE?证明你的结论.
(Ⅲ)求三棱锥A-BFD的体积.

查看答案和解析>>

同步练习册答案