精英家教网 > 高中数学 > 题目详情
已知函数f(x)=alnx+x2 (a为实常数),e为自然对数的底数.
(1)求函数f(x)在[1,e]上的最小值;
(2)若存在x∈[1,e],使得不等式f(x)≤(a+2)x成立,求实数a的取值范围.
分析:(1)求出导函数,通过对导函数为0的根与区间[1,e]的三种关系,判断出函数的单调性,求出函数的极值及端点值,从中选出最小值.
(2)列出不等式有解,分离出参数a,构造函数g(x),通过导数求出g(x)的最小值,令a≥g(x)最大值.
解答:解:(1)f′(x)=
2x2+a
x
(x>0)
,当[1,e],2x2+a∈[a+2,a+2e2].
①若a≥-2,f′(x)在[1,e]上非负(仅当a=-2,x=1时,f′(x)=0,故函数f(x)在[1,e]上是增函数,此时[f(x)]min=f(1)=1.
②若-2e2<a<-2,当x=
-a
2
时,f′(x)=0;当1≤x<
-a
2
时,f′(x)<0,此时f(x)
是减函数;当
-a
2
<x≤e
时,f′(x)>0,此时f(x)是增函数.故[f(x)]min=f(
-a
2
)
=
a
2
ln(-
a
2
)-
a
2

③若a≤-2e2,f′(x)在[1,e]上非正(仅当a=-2e2,x=e时,f′(x)=0,故函数f(x)在[1,e]上是减函数,此时[f(x)]min=f(e)=a+e2
综上可知,[f(x)]min=
1(a≥-2)
a
2
ln(-
a
2
)-
a
2
(-2e2<a<-2)
a+e2(a≤-2e2)

(2)不等式f(x)≤(a+2)x,可化为a(x-lnx)≥x2-2x.
∵x∈[1,e],∴lnx≤1≤x且等号不能同时取,所以lnx<x,即x-lnx>0,
因而a≥
x2-2x
x-lnx
(x∈[1,e])

g(x)=
x2-2x
x-lnx
(x∈[1,e])
,又g′(x)=
(x-1)(x+2-2lnx)
(x-lnx)2

当x∈[1,e]时,x-1≥0,lnx≤1,x+2-2lnx>0,
从而g′(x)≥0(仅当x=1时取等号),所g(x)在[1,e]上为增函数,
故g(x)的最小值为g(1)=-1,所以a的取值范围是[-1,+∞).
点评:求函数的最值,先通过导数求出函数的极值,再求出函数的两个端点值,选出函数的最值;解决函数有解问题,常分离参数转化为求函数的最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案