精英家教网 > 高中数学 > 题目详情
15.已知x2+y2-xy=1,求u=x2-y2的最大值和最小值.

分析 换元法,领x=a+b,y=a-b,已知式子可化为a2+3b2=1,u=4ab,由基本不等式可得ab的范围,进而可得u的范围.

解答 解:设x=a+b,y=a-b,
则x2+y2-xy=1可化为(a+b)2+(a-b)2-(a+b)(a-b)=1,
整理可得a2+3b2=1,∴u=x2-y2=(a+b)2-(a-b)2=4ab,
∵1=a2+3b2≥2$\sqrt{3}$|ab|,∴|ab|≤$\frac{1}{2\sqrt{3}}$=$\frac{\sqrt{3}}{6}$,
∴-$\frac{\sqrt{3}}{6}$≤ab≤$\frac{\sqrt{3}}{6}$,∴-$\frac{2\sqrt{3}}{3}$≤4ab≤$\frac{2\sqrt{3}}{3}$,
∴u=x2-y2的最大值和最小值分别为$\frac{2\sqrt{3}}{3}$和-$\frac{2\sqrt{3}}{3}$

点评 本题考查基本不等式求最值,换元是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,已知中心在原点O、焦点在x轴上的椭圆C′过点M(2,1),离心率为$\frac{\sqrt{3}}{2}$,抛物线C顶点在原点,对称轴为x轴且过点M.
(1)求椭圆C′的方程和抛物线C的方程.
(2)斜率为-$\frac{1}{4}$的直线l不过M点,与抛物线C交于A,B两个不同的点,求证:直线MA,MB与x轴总围成等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知正三棱锥各棱长为a,求:
(1)侧棱和底面所成的角的余弦值;
(2)相邻两个面所成的角的余弦值;
(3)两条不相交的棱所成的角;
(4)两条不相交的棱之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某校为了调查“学业水平考试”学生的数学成绩,随机地抽取该校甲、乙两班各10名同学,获得的数据如下:(单位:分)
甲:132,108,112,121,113,121,118,127,118,129;
乙:133,107,120,113,122,114,125,118,129,127.
(1)以百位和十位为茎,个位为叶,在图5中作出甲、乙两班学生数学成绩的茎叶图,并判断哪个班的平均水平较高;
(2)若数学成绩不低于128分,称为“优秀”,求从甲班这10名学生中随机选取3名,至多有1名“优秀”的概率;
(3)以这20人的样本数据来估计整个学校的总体成绩,若从该校(人数很多)任选3人,记X表示抽到“优秀”学生的人数,求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知角α的终边落在x轴的正半轴上,则角$\frac{α}{2}$的终边落在(  )
A.x轴正半轴上B.x轴上C.y轴正半轴上D.y轴上

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+$2\sqrt{2}$=(1+$\sqrt{2}$)2.善于思考的小明进行了以下探索:
设a+b$\sqrt{2}$=(m+n$\sqrt{2}$)2(其中a、b、m、n均为整数),则有a+b$\sqrt{2}$=m2+2n2+2mn$\sqrt{2}$.
∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b$\sqrt{2}$的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
(1)当a、b、m、n均为正整数时,若a+b$\sqrt{3}$=${(m+n\sqrt{3})}^{2}$,用含m、n的式子分别表示a、b,得:a=m2+3n2,b=2mn.;
(2)利用所探索的结论,找一组正整数a、b、m、n填空:4+2$\sqrt{3}$=(1+1$\sqrt{3}$)2
(3)若a+4$\sqrt{3}$=${(m+n\sqrt{3})}^{2}$,且a、m、n均为正整数,求a的值?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,a=4,B=30°,C=45°,求△ABC的外接圆半径R和面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x3+ax2+x+1在(-$\frac{2}{3}$,-$\frac{1}{3}$)上单调递增,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={1,2,3},B={Z∈Z|1<x<4},则A∩B=(  )
A.{1}B.{2,4}C.{2,3}D.(1,4)

查看答案和解析>>

同步练习册答案