精英家教网 > 高中数学 > 题目详情
4.椭圆$\frac{x^2}{4}+{y^2}$=1上的点P到上顶点距离的最大值为(  )
A.2B.$\sqrt{5}$C.$\frac{{4\sqrt{3}}}{3}$D.不存在最大值

分析 设椭圆$\frac{x^2}{4}+{y^2}$=1上的点P(2cosθ,sinθ),上顶点B(0,1),由此利用两点间距离公式和三角函数性质能求出结果.

解答 解:设椭圆$\frac{x^2}{4}+{y^2}$=1上的点P(2cosθ,sinθ),
上顶点B(0,1),
|PB|=$\sqrt{4co{s}^{2}θ+(sinθ-1)^{2}}$
=$\sqrt{5-3si{n}^{2}θ-2sinθ}$
=$\sqrt{\frac{16}{3}-3(sinθ+\frac{1}{3})^{2}}$≤$\sqrt{\frac{16}{3}}$=$\frac{4\sqrt{3}}{3}$.
∴椭圆$\frac{x^2}{4}+{y^2}$=1上的点P到上顶点距离的最大值为$\frac{4\sqrt{3}}{3}$.
故选:C.

点评 本题考查椭圆上的点P到上顶点距离的最大值的求法,是基础题,解题时要认真审题,注意椭圆的参数方程和两点间距离公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-1,3),$\overrightarrow{c}$=λ$\overrightarrow{a}$+$\overrightarrow{b}$,λ∈R.
(1)若向量$\overrightarrow{d}$=(14,-2)且$\overrightarrow{c}⊥\overrightarrow{d}$,求实数λ的值;
(2)求|$\overrightarrow{c}$|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.a>0,c>0是方程ax2+y2=c表示椭圆的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知:点A(-2,3),M(1,1),点A′关于点M成中心对称,则点A′的坐标是(4,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,-π<φ≤π)在$x=\frac{π}{6}$处取得最大值2,其图象与x轴的相邻两个交点的距离为$\frac{π}{2}$.
(1)求f(x)的解析式;
(2)求函数$g(x)=\frac{{6{{cos}^4}x-{{sin}^2}x-1}}{{{{[{f({\frac{x}{2}+\frac{π}{6}})}]}^2}-2}}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$\frac{tanα}{tanα-1}=-1$,则$\frac{sinα-3cosα}{sinα+cosα}$=(  )
A.$-\frac{5}{3}$B.3C.$-\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.随着环保理念的深入,用建筑钢材余料创作城市雕塑逐渐流行.如图是其中一个抽象派雕塑的设计图.图中α表示水平地面,线段AB表示的钢管固定在α上;为了美感,需在焊接时保证:线段AC表示的钢管垂直于α,BD⊥AB,且保持BD与AC异面.

(1)若收集到的余料长度如下:AC=BD=24(单位长度),AB=7,CD=25,按现在手中的材料,求BD与α应成的角;
(2)设计师想在AB,CD中点M,N处再焊接一根连接管,然后挂一个与AC,BD同时平行的平面板装饰物.但他担心此设计不一定能实现.请你替他打消疑虑:无论AB,CD多长,焊接角度怎样,一定存在一个过MN的平面与AC,BD同时平行(即证明向量$\overrightarrow{MN}$与$\overrightarrow{AC}$,$\overrightarrow{BD}$共面,写出证明过程);
(3)如果事先能收集确定的材料只有AC=BD=24,请替设计师打消另一个疑虑:即MN要准备多长不用视AB,CD长度而定,只与θ有关(θ为设计的BD与α所成的角),写出MN与θ的关系式,并帮他算出无论如何设计MN都一定够用的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.化简2sin15°sin75°的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在茎叶图中,样本的中位数为72,众数为72.

查看答案和解析>>

同步练习册答案