精英家教网 > 高中数学 > 题目详情
6.若($\frac{1}{x}$-3x)n的展开式中二项式系数和为64,则展开式的常数项为-540.(用数字作答)

分析 根据二项式展开式的二项式系数和为64求出n的值,再计算展开式的常数项.

解答 解:($\frac{1}{x}$-3x)n的展开式中二项式系数和为64,
∴2n=64,
解得n=6;
∴($\frac{1}{x}$-3x)6的展开式中通项公式为
Tr+1=${C}_{6}^{r}$•${(\frac{1}{x})}^{6-r}$•(-3x)r=(-3)r•${C}_{6}^{r}$•x2r-6
令2r-6=0,解得r=3,
∴展开式的常数项为
T4=(-3)3•${C}_{6}^{3}$=-540.
故答案为:-540.

点评 本题考查了二项式定理的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数y=3sin(x+$\frac{π}{5}$)的图象C.为了得到函数y=3sin(2x-$\frac{π}{5}$)的图象,只要把C上所有的点(  )
A.先向右平行移动$\frac{π}{5}$个单位长度,然后横坐标伸长到原来的2倍,纵坐标不变
B.先横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变,然后向左平行移动$\frac{π}{5}$个单位长度
C.先向右平行移动$\frac{2π}{5}$个单位长度,然后横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变
D.先横坐标伸长到原来的2倍,纵坐标不变,然后向左平行移动$\frac{2π}{5}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$sinα=\frac{1}{3},α∈({\frac{π}{2},π})$,则cos(-α)=(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{{2\sqrt{2}}}{3}$D.$-\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在如图所示的多面体ABCDEF中,ABCD为直角梯形,AB∥CD,∠DAB=90°,四边形ADEF为等腰梯形,EF∥AD,已知AE⊥EC,AB=AF=EF=2,AD=CD=4.
(1)求证:平面ABCD⊥平面ADEF;
(2)求直线CF与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,在?ABCD中,∠B=30°,AB=AC,O是两条对角线的交点,过点O作AC的垂线分别交边AD,BC于点E,F,点M是边AB的一个三等分点,则△AOE与△BMF的面积比为3:4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知a+b=2,b>0,当$\frac{1}{2|a|}$+$\frac{|a|}{b}$取最小值时,实数a的值是-2或$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知平面上的曲线l及点P,在l上任取一点Q,线段PQ长度的最小值称为点P到曲线l的距离,记作d(P,l).
(1)求点P(3,4)到曲线l:x2+y2=4的距离d(P,l);
(2)设曲线l:$\left\{\begin{array}{l}{{y}^{2}=1(-1<x<1)}\\{(x-1)^{2}+{y}^{2}=1(1≤x≤2)}\\{(x+1)^{2}+{y}^{2}=1(-2≤x≤-1)}\end{array}\right.$,求点集S={P|2<d(P,l)≤3}所表示图形的面积;
(3)设曲线l1:y=0(-1≤x≤1),曲线l2:x2+y2=1,求出到两条曲线l1,l2距离相等的点的集合Ω={P|d(P,l1)=d(P,l2)}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设非负实数x和y满足$\left\{\begin{array}{l}x+y-2≤0\\ x+2y-4≤0\\ x+4y-4≤0\end{array}\right.$,则z=3x+y的最大值为(  )
A.2B.$\frac{14}{3}$C.6D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=xlnx+(1-x)ln(1-x),x∈(0,1).
(1)求f(x)的最小值;
(2)若a+b+c=1,a,b,c∈(0,1).求证:alna+blnb+clnc≥(a-2)ln2.

查看答案和解析>>

同步练习册答案