精英家教网 > 高中数学 > 题目详情
7.某电脑公司有6名产品推销员,其工作年限与年推销金额数据如下表:
推销员编号12345
工作年限x年35679
年推销金额y万元23345
(1)从编号1-5的五位推销员中随机取出两位,求他们年推销金额之和不少于7万元的概率;
(2)求年推销金额y关于工作年限x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;若第6名产品推销员的工作年限为11年,试估计他的年推销金额.
附:回归直线的斜率和截距的最小二乘法估计公式为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{(x}_{i}-\overline{x}){(x}_{i}-\overline{y})}{{\sum_{i=1}^{n}{(x}_{i}-\overline{x})}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

分析 (1)列举基本事件,即可求出概率;
(2)将表中数据,先求出x,y的平均数,累加相关的数据后,代入相关系数公式,计算出回归系数,得到推销金额y关于工作年限x的线性回归方程,将工作年限为11年代,代入推销金额y关于工作年限x的线性回归方程,即可预报出他的年推销金额的估算值.

解答 解:(1)从编号1-5的五位推销员中随机选出两位,他们的年推销金额组合如下{2,3(1)},{2,3(2)},{2,4},{2,5},{3(1),3(2)},{3(1),4},{3(1),5},{3(2),4},{3(2),5},{4,5}共10种.
其中满足两人年推销金额不少于7万元的情况共有6种,则所求概率$P=\frac{6}{10}=\frac{3}{5}$.
(2)由表中数据可知:$\overline x=6,\overline y=3.4$,由上公式可得$\hat b=\frac{{-3×({-1.4})+({-1})×({-0.4})+1×0.6+3×1.6}}{9+1+1+9}=0.5$,$\hat a=\overline y-\hat b\overline x=3.4-0.5×6=0.4$.
故$\hat y=0.5x+0.4$,
又当x=11时,$\hat y=5.9$,
故第6名产品推销员的工作年限为11年,他的年推销金额约为5.9万元.

点评 本题考查概率的计算,考查回归分析的初步应用,考查利用最小二乘法求线性回归方程,是一个综合题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.给定两个长度为1的平面向量$\overrightarrow{OA}$和$\overrightarrow{OB}$,它们的夹角为$\frac{2π}{3}$.点C在以O为圆心的圆弧AB上运动,若$\overrightarrow{OC}=x\overrightarrow{OA}+y\overrightarrow{OB}$,其中x,y∈R,则x+y的取值范围是[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.直线x-y+4=0被圆x2+y2+4x-4y+6=0截得的弦长等于(  )
A.8B.4C.2$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.8把椅子摆成一排,4人随机就座,任何两人不相邻的坐法种数为(  )
A.144B.120C.72D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义在R上的函数f(x)满足:f′(x)>1-f(x),f(0)=6,f′(x)是f(x)的导函数,则不等式$f(x)>1+\frac{5}{e^x}$(其中e为自然对数的底数)的解集为(  )
A.(0,+∞)B.(-∞,0)∪(3,+∞)C.(-∞,0)∪(1,+∞)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列命题正确的是(  )
A.若ac>bc,则a>bB.若a>b,c>d,则ac>bd
C.若a>b,则$\frac{1}{a}<\frac{1}{b}$D.若ac2>bc2,则a>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.经过长期观测得到:在交通繁忙的时段内,某公路汽车的车流量y(千辆/h)与汽车的平均速度v(km/h)之间的函数关系式为$y=\frac{240v}{{{v^2}+20v+1600}}({v>0})$.
(I)若要求在该段时间内车流量超过2千辆/h,则汽车在平均速度应在什么范围内?
(II)在该时段内,当汽车的平均速度v为多少时,车流量最大?最大车流量为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某地最近十年对某商品的需求量逐年上升,下表是部分统计数据:
年份20082010201220142016
需要量(万件)236246257276286
(1)利用所给数据求年需求量y与年份x之间的回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(2)预测该地2018年的商品需求量(结果保留整数).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)=(x+1)2-alnx在区间(0,+∞)内任取有两个不相等的实数x1,x2,不等式$\frac{{f({{x_1}+1})-f({{x_2}+1})}}{{{x_1}-{x_2}}}$>1恒成立,则a的取值范围是(  )
A.(-∞,3)B.(-∞,-3)C.(-∞,3]D.(-∞,-3]

查看答案和解析>>

同步练习册答案