精英家教网 > 高中数学 > 题目详情
19.经过长期观测得到:在交通繁忙的时段内,某公路汽车的车流量y(千辆/h)与汽车的平均速度v(km/h)之间的函数关系式为$y=\frac{240v}{{{v^2}+20v+1600}}({v>0})$.
(I)若要求在该段时间内车流量超过2千辆/h,则汽车在平均速度应在什么范围内?
(II)在该时段内,当汽车的平均速度v为多少时,车流量最大?最大车流量为多少?

分析 (I)由条件得$\frac{240v}{{v}^{2}+20v+1600}$>2,解不等式即可求出v的范围.
(II)根据基本不等式性质可知 y=$\frac{240v}{{v}^{2}+20v+1600}$=$\frac{240}{v+\frac{1600}{v}+20}$,进而求得y的最大值.根据等号成立的条件求得此时的平均速度.

解答 解:(I)由条件得$\frac{240v}{{v}^{2}+20v+1600}$>2,
整理得到(v-20)(v-80)<0,解得20<v<80.
(II)由题知,y=$\frac{240v}{{v}^{2}+20v+1600}$=$\frac{240}{v+\frac{1600}{v}+20}$≤2.4.
当且仅当v=$\frac{1600}{v}$即v=40时等号成立.
所以最大车流量为2.4千辆/h.

点评 本题主要考查了基本不等式在最值问题中的应用.要特别留意等号取得的条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若函数f(x)=-x3+6x2+m的极大值为12,则实数m=-20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.通过随机询问2016名性别不同的大学生是否爱好某项运动,得到K2=6.023,则根据这一数据查阅表,则有把握认为“爱好该项运动与性别有关”的可信程度是(  )
P(K2≥k)0.250.150.100.0250.0100.005
k1.3232.0722.7065.0246.6357.879
A.90%B.95%C.97.5%D.99.5%

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某电脑公司有6名产品推销员,其工作年限与年推销金额数据如下表:
推销员编号12345
工作年限x年35679
年推销金额y万元23345
(1)从编号1-5的五位推销员中随机取出两位,求他们年推销金额之和不少于7万元的概率;
(2)求年推销金额y关于工作年限x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;若第6名产品推销员的工作年限为11年,试估计他的年推销金额.
附:回归直线的斜率和截距的最小二乘法估计公式为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{(x}_{i}-\overline{x}){(x}_{i}-\overline{y})}{{\sum_{i=1}^{n}{(x}_{i}-\overline{x})}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.定义在(-1,1)上的函数f(x)满足:$f(x)-f(y)=f({\frac{x-y}{1-xy}})$,当x∈(-1,0)时,有f(x)>0,且$f({-\frac{1}{2}})=1$.设$m=f({\frac{1}{5}})+f({\frac{1}{11}})+…+f({\frac{1}{{{n^2}+n-1}}}),\;\;n≥2,n∈{N^*}$,则实数m与-1的大小关系为(  )
A.m<-1B.m=-1C.m>-1D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=$\frac{1}{3}$x3-$\frac{a}{2}$x2+bx+c,曲线y=f(x)在点(0,f(0))处的切线方程为y=1.
(1)求b,c的值;
(2)若a>0,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列说法错误的是(  )
A.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高
B.在线性回归分析中,回归直线不一定过样本点的中心($\overline{x}$,$\overline{y}$)
C.在回归分析中,R2为0.98的模型比R2为0.80的模型拟合的效果好
D.自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.执行如图所示的储蓄框图,若输出S的值为720,则判断框内可填入的条件是k≤7?.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.(1-x)5(1+$\sqrt{x}$)2的展开式中x4的系数为(  )
A.-10B.-5C.10D.15

查看答案和解析>>

同步练习册答案