精英家教网 > 高中数学 > 题目详情
19.函数f(x)=4$\sqrt{x}$+$\sqrt{x(x-1)}$的定义域为{x|x=0或x≥1}.

分析 由根式内部的代数式大于等于0联立不等式组求解.

解答 解:由$\left\{\begin{array}{l}{x≥0}\\{x(x-1)≥0}\end{array}\right.$,得x=0或x≥1.
∴函数f(x)=4$\sqrt{x}$+$\sqrt{x(x-1)}$的定义域为:{x|x=0或x≥1}.
故答案为:{x|x=0或x≥1}.

点评 本题考查函数的定义域及其求法,考查了不等式组的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.过球O表面上一点A引三条长度相等的弦AB,AC,AD,且两两夹角都为60°,若球半径为3,则弦AB的长度为2$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.过点A(4,$\frac{3π}{2}$)引圆ρ=4sinθ的一条切线,则切线长为(  )
A.3$\sqrt{3}$B.6$\sqrt{3}$C.2$\sqrt{3}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别F1(-c,0),F2(c,0),若椭圆上存在点P,使得csin∠PF1F2=asin∠PF2F1≠0,则离心率e的取值范围是(  )
A.$(0,\frac{{\sqrt{2}}}{2})$B.$(\sqrt{2}-1,1)$C.$[\sqrt{2}-1,1)$D.$(0,\sqrt{2}-1]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线的中心为原点,离心率e=$\sqrt{5}$,且它的一个焦点与抛物线x2=-8$\sqrt{5}$y的焦点重合,则此双曲线方程为(  )
A.$\frac{y^2}{16}-\frac{x^2}{4}=1$B.$\frac{y^2}{4}-\frac{x^2}{16}=1$C.$\frac{x^2}{16}-\frac{y^2}{4}=1$D.$\frac{x^2}{4}-\frac{y^2}{16}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知f(x+1)=f(x-1),f(x)=f(2-x),方程f(x)=0在[0,1]内只有一个根x=$\frac{1}{2}$,则f(x)=0在区间[0,2016]内根的个数2016.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.化简下列各式:
(1)3a(a+1)-(3+a)(3-a)-(2a-1)2
(2)($\frac{{x}^{2}-2x+4}{x-1}$+2-x)÷$\frac{{x}^{2}+4x+4}{1-x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,椭圆C的一个短轴端点与抛物线x2=4y的焦点重合.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过椭圆C右焦点的直线l交椭圆于A,B两点,若以AB为直径的圆过原点,求直线l方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知a,b,c满足4a=9,b=log${\;}_{\frac{1}{3}}$5,c3=$\frac{3}{5}$,则(  )
A.a<b<cB.b<c<aC.c<a<bD.c<b<a

查看答案和解析>>

同步练习册答案