精英家教网 > 高中数学 > 题目详情
14.已知双曲线的中心为原点,离心率e=$\sqrt{5}$,且它的一个焦点与抛物线x2=-8$\sqrt{5}$y的焦点重合,则此双曲线方程为(  )
A.$\frac{y^2}{16}-\frac{x^2}{4}=1$B.$\frac{y^2}{4}-\frac{x^2}{16}=1$C.$\frac{x^2}{16}-\frac{y^2}{4}=1$D.$\frac{x^2}{4}-\frac{y^2}{16}=1$

分析 求出抛物线的焦点坐标,利用双曲线的离心率,求出a、c、b,然后求解双曲线方程.

解答 解:双曲线的中心为原点,离心率e=$\sqrt{5}$,且它的一个焦点与抛物线x2=-8$\sqrt{5}$y的焦点重合,
可得e=$\frac{c}{a}$=$\sqrt{5}$,c=2$\sqrt{5}$,则a=2.b=5.
双曲线的焦点坐标在y轴上,
所以此双曲线方程为:$\frac{y^2}{4}-\frac{x^2}{16}=1$.
故选:B.

点评 本题考查双曲线的简单性质的应用,双曲线方程的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知f(x)=$\frac{{e}^{x}-1}{{e}^{x}+1}$(e为自然对数的底数).
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)求证:当x>0时,f(x)>$\frac{x}{x+2}$恒成立;
(3)已知k>0,如果当x>0时,f(x)>$\frac{kx}{{e}^{x}+1}$恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.函数f(x)=ax2-(2a+1)x+lnx
(1)当a=1时,求f(x)的单调区间和极值;
(2)设g(x)=ex-x-1,当a<0时,若对任意x1∈(0,+∞),x2∈R,不等式f(x1)≤g(x2)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=4x+$\frac{1}{{\sqrt{x}}}$,(x>0),记m=fmin(x);
(1)求m;
(2)解关于x的不等式|x-2|+|x-1|≥m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若不等式$\frac{4x+1}{x+2}$<0和不等式ax2+bx-2>0的解集相同,则a、b的值为(  )
A.a=-8,b=-10B.a=-4,b=-9C.a=-1,b=9D.a=-1,b=2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=4$\sqrt{x}$+$\sqrt{x(x-1)}$的定义域为{x|x=0或x≥1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.为了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段间隔为40.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2x+2ax-b(a,b∈R)满足f(-2)=$\frac{17}{4}$,f(3)=$\frac{65}{8}$.
(1)判断并证明函数f(x)在(-∞,0]上的单调性;
(2)若不等式f(x)-2t≥0对于?x∈(-∞,+∞)恒成立,求实数t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{a}$+$\overrightarrow{b}$|=|2$\overrightarrow{a}$+$\overrightarrow{b}$|=1,则|$\overrightarrow{b}$|=$\sqrt{3}$.

查看答案和解析>>

同步练习册答案