精英家教网 > 高中数学 > 题目详情
7.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别F1(-c,0),F2(c,0),若椭圆上存在点P,使得csin∠PF1F2=asin∠PF2F1≠0,则离心率e的取值范围是(  )
A.$(0,\frac{{\sqrt{2}}}{2})$B.$(\sqrt{2}-1,1)$C.$[\sqrt{2}-1,1)$D.$(0,\sqrt{2}-1]$

分析 由正弦定理及椭圆的离心率公式可知:椭圆的离心率e=$\frac{c}{a}$=$\frac{sin∠P{F}_{2}{F}_{1}}{sin∠P{F}_{1}{F}_{2}}$,$\frac{丨P{F}_{1}丨}{丨P{F}_{2}丨}$=e,作出椭圆的左准线l,作PQ⊥l于Q,根据椭圆的第二定义得|PQ|=|PF2|=$\frac{丨P{F}_{1}丨}{e}$.设P(x,y),将|PF1|、|PF2|表示为关于a、c、e、x的式子,利用|PF2|+|PF1|=2a,解出x═$\frac{ae-a}{e(e+1)}$.最后根据椭圆上点的横坐标满足-a≤x≤a,建立关于e的不等式并解得e<-1-$\sqrt{2}$或e>$\sqrt{2}$,根据椭圆离心率的取值范围,即可得到该椭圆离心率的取值范围.

解答 解:∵△PF1F2中,由正弦定理得$\frac{丨P{F}_{1}丨}{sin∠P{F}_{2}{F}_{1}}$=$\frac{丨P{F}_{2}丨}{sin∠P{F}_{1}{F}_{2}}$,
∴$\frac{丨P{F}_{1}丨}{丨P{F}_{2}丨}$=$\frac{sin∠P{F}_{2}{F}_{1}}{sin∠P{F}_{1}{F}_{2}}$.
又∵csin∠PF1F2=asin∠PF2F1
∴椭圆的离心率e=$\frac{c}{a}$=$\frac{sin∠P{F}_{2}{F}_{1}}{sin∠P{F}_{1}{F}_{2}}$,由此可得$\frac{丨P{F}_{1}丨}{丨P{F}_{2}丨}$=e,
作出椭圆的左准线l,设P在l上的射影为点Q,连结PQ,
由椭圆的第二定义,得$\frac{丨P{F}_{1}丨}{丨PQ丨}$=e,
因此|PQ|=|PF2|=$\frac{丨P{F}_{1}丨}{e}$.
设P(x,y),可得|PQ|=x+$\frac{{a}^{2}}{c}$,
∴|PF2|=x+$\frac{{a}^{2}}{c}$,|PF1|=e|PF2|=e(x+$\frac{{a}^{2}}{c}$).
由椭圆的第一定义,得|PF2|+|PF1|=2a,即(1+e)(x+$\frac{{a}^{2}}{c}$)=2a,解得x=$\frac{2a}{1+e}$-$\frac{{a}^{2}}{c}$=$\frac{ae-a}{e(e+1)}$.
∵P(x,y)为椭圆上一点,满足-a<x<a,
∴-a<$\frac{ae-a}{e(e+1)}$<a,即-1<$\frac{e-1}{e(e+1)}$<1,
解得e<-1-$\sqrt{2}$或e>$\sqrt{2}$,
∵椭圆的离心率e∈(0,1),
∴该椭圆离心率的取值范围是($\sqrt{2}$-1,1).
故选B.

点评 本题考查椭圆的第二定义的应用,考查离心率的取值范围.着重考查了正弦定理、椭圆的定义与简单几何性质和不等式的解法等知识,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.如图是网络工作者经常用来解释网络运作的蛇形模型:数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行;依此类推,则第63行从左至右的第7个数是2010.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.椭圆$\frac{x^2}{25}+{y^2}$=1上一点P到焦点F1的距离等于6,则点P到另一个焦点F2的距离为(  )
A.10B.8C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.A,B,C为圆O上三点,且直线OC与直线AB交于圆外一点,若$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,则m+n的范围是(  )
A.(0,1)B.(1,+∞)C.(-1,0)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=4x+$\frac{1}{{\sqrt{x}}}$,(x>0),记m=fmin(x);
(1)求m;
(2)解关于x的不等式|x-2|+|x-1|≥m.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=|x-1|+|x+1|的增区间为[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=4$\sqrt{x}$+$\sqrt{x(x-1)}$的定义域为{x|x=0或x≥1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在平面直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立坐标系,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数).
(1)求曲线C1的直角坐标方程;
(2)曲线C2的极坐标方程为θ=$\frac{π}{6}$(ρ∈R),求C1与C2的公共点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)=\frac{{{x^2}+a}}{x},且f(1)=2$
(1)证明函数f(x)是奇函数;
(2)证明f(x)在(1,+∞)上是增函数.

查看答案和解析>>

同步练习册答案