精英家教网 > 高中数学 > 题目详情
17.已知函数$f(x)=\frac{{{x^2}+a}}{x},且f(1)=2$
(1)证明函数f(x)是奇函数;
(2)证明f(x)在(1,+∞)上是增函数.

分析 (1)由解析式先求出函数的定义域,化简f(x)和f(-x)后,由函数奇偶性的定义即可证明;
(2)根据函数单调性的定义:取值、作差、变形、定号、下结论,进行证明即可.

解答 (1)证明:f(x)的定义域为{x|x≠0},关于原点对称,
∵f(1)=2,∴1+a=2,即a=1
∵f(x)=$\frac{{x}^{2}+1}{x}$=x+$\frac{1}{x}$,f(-x)=-x-$\frac{1}{x}$=-f(x),
∴f(x)是奇函数.
(2)证明:任取x1,x2∈(1,+∞)且x1<x2
∴f(x1)-f(x2)=x1+$\frac{1}{x1}$-(x2+$\frac{1}{x2}$)
=(x1-x2)•$\frac{{x}_{1}{x}_{2}-1}{{x}_{1}{x}_{2}}$.
∵x1<x2,且x1x2∈(1,+∞),
∴x1-x2<0,x1x2>1,
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
∴f(x)在(1,+∞)上为增函数.

点评 本题考查函数奇偶性的定义,函数单调性的定义:取值、作差、变形、定号、下结论的应用,考查化简、变形能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别F1(-c,0),F2(c,0),若椭圆上存在点P,使得csin∠PF1F2=asin∠PF2F1≠0,则离心率e的取值范围是(  )
A.$(0,\frac{{\sqrt{2}}}{2})$B.$(\sqrt{2}-1,1)$C.$[\sqrt{2}-1,1)$D.$(0,\sqrt{2}-1]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,椭圆C的一个短轴端点与抛物线x2=4y的焦点重合.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过椭圆C右焦点的直线l交椭圆于A,B两点,若以AB为直径的圆过原点,求直线l方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=|x-1|-2|x+1|的最大值为m
(I)求m的值;
( II)若a,b,c∈(0,+∞)),且a2+3b2+2c2=m,求ab+2bc的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,a,b,c为角A,B,C的对边,若b=1,c=$\sqrt{3}$,A=$\frac{π}{6}$,则cos5B=(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.$\frac{1}{2}$或-1D.-$\frac{\sqrt{3}}{2}$或0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若集合M={x∈Z||x|≤2},N={x|x2+2x-3<0},则M∩N=(  )
A.[-2,1)B.[-2,1]C.{-2,-1,0}D.{-1,0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知a,b,c满足4a=9,b=log${\;}_{\frac{1}{3}}$5,c3=$\frac{3}{5}$,则(  )
A.a<b<cB.b<c<aC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若函数$f(x)=1+\frac{2}{x-1}$,x∈[2,4),则f(x)的值域是($\frac{5}{3}$,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设二阶矩阵A,B满足A-1=$[\begin{array}{l}{1}&{2}\\{3}&{2}\end{array}]$,BA=$[\begin{array}{l}{1}&{0}\\{0}&{1}\end{array}]$,求矩阵B的特征值.

查看答案和解析>>

同步练习册答案