精英家教网 > 高中数学 > 题目详情
6.若函数$f(x)=1+\frac{2}{x-1}$,x∈[2,4),则f(x)的值域是($\frac{5}{3}$,3].

分析 根据反比例函数的性质,利用单调性求解即可.

解答 解:函数$f(x)=1+\frac{2}{x-1}$,
∵y=$\frac{2}{x-1}$在(-∞,1)和(1,+∞)是单调递减,
∴y=$\frac{2}{x-1}$在,x∈[2,4)的值域为y∈($\frac{2}{3}$,2],
∴函数$f(x)=1+\frac{2}{x-1}$在x∈[2,4)上的值域为($\frac{5}{3}$,3]
故答案为:($\frac{5}{3}$,3].

点评 本题考查了值域的求法,利用了函数的单调性求解.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.在平面直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立坐标系,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数).
(1)求曲线C1的直角坐标方程;
(2)曲线C2的极坐标方程为θ=$\frac{π}{6}$(ρ∈R),求C1与C2的公共点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)=\frac{{{x^2}+a}}{x},且f(1)=2$
(1)证明函数f(x)是奇函数;
(2)证明f(x)在(1,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.直线$\left\{{\begin{array}{l}{x=3+tcos{{230}°}\;\;}\\{y=-1+tsin{{230}°}}\end{array}}\right.$(t为参数)的倾斜角是(  )
A.30°B.45°C.50°D.60°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知m,n是不重合的两条直线,α,β是不重合的两个平面.下列命题:
①若α⊥β,m⊥α,则m∥β;
②若m⊥α,m⊥β,则α∥β;
③若m∥α,n⊥α,则m⊥n;
④若m∥α,m?β,则α∥β.
其中所有真命题的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f(x)=$\left\{\begin{array}{l}1,x为有理数\\ 0,x为无理数\end{array}$,称为狄利克雷函数,则关于函数f(x)有以下四个命题:
①f(f(x))=1;
②函数f(x)是偶函数;
③任意一个非零有理数T,f(x+T)=f(x)对任意x∈R恒成立;
④存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC为等边三角形.
其中真命题的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.中国人口已经出现老龄化与少子化并存的结构特征,测算显示中国是世界上人口老龄化速度最快的国家之一,再不实施“放开二胎”新政策,整个社会将会出现一系列的问题,若某地区2015年人口总数为45万,实施“放开二胎”新政策后专家估计人口总数将发生如下变化:从2016年开始到2025年每年人口比上年增加0.5万人,从2026年开始到2035年每年人口为上一年的99%.
(1)求实施新政策后,从2016年开始到2035年,第n年的人口总数an的表达式;
(2)若新政策实施后的2016年到2035年人口平均值超过49万,则需调整政策,否则继续实施,问到2035年后是否需要调整政策?(说明:0.9910=(1-001)10≈0.9).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,是△ABC边长为1的正三角形,M,N分别是AB,AC边上的点,线段MN过△ABC的重心,设∠MGA=α,$\frac{π}{3}$≤α≤$\frac{2π}{3}$.
(Ⅰ)当α=$\frac{2π}{3}$时,求MG的长;
(Ⅱ)分别记△AGM,△AGN的面积为S1,S2,试将S1,S2表示为α的函数;
(Ⅲ)设y=$\frac{1}{{{S}_{1}}^{2}}$+$\frac{1}{{{S}_{2}}^{2}}$,求y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.各项均为正数的数列{an}中,前n项和${S_n}={({\frac{{{a_n}+1}}{2}})^2}$.
(1)求数列{an}的通项公式;
(2)若$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_n}{a_{n+1}}}}$<k恒成立,求k的取值范围;
(3)是否存在正整数m,k,使得am,am+5,ak成等比数列?若存在,求出m和k的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案