精英家教网 > 高中数学 > 题目详情
1.已知m,n是不重合的两条直线,α,β是不重合的两个平面.下列命题:
①若α⊥β,m⊥α,则m∥β;
②若m⊥α,m⊥β,则α∥β;
③若m∥α,n⊥α,则m⊥n;
④若m∥α,m?β,则α∥β.
其中所有真命题的序号是②③.

分析 根据空间中直线与平面的位置关系的分类及几何特征,逐一分析四个命题的真假,可得答案.

解答 解:①若α⊥β,m⊥α,则m∥β或m?β,故错误;
②若m⊥α,m⊥β,则α∥β,故正确;
③若m∥α,n⊥α,则m⊥n,故正确;
④若m∥α,m?β,则α与β的位置不确定,故错误.
故答案为:②③

点评 本题以命题的真假判断与应用为载体,考查了空间直线与平面的位置关系,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.化简下列各式:
(1)3a(a+1)-(3+a)(3-a)-(2a-1)2
(2)($\frac{{x}^{2}-2x+4}{x-1}$+2-x)÷$\frac{{x}^{2}+4x+4}{1-x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,a,b,c为角A,B,C的对边,若b=1,c=$\sqrt{3}$,A=$\frac{π}{6}$,则cos5B=(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.$\frac{1}{2}$或-1D.-$\frac{\sqrt{3}}{2}$或0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知a,b,c满足4a=9,b=log${\;}_{\frac{1}{3}}$5,c3=$\frac{3}{5}$,则(  )
A.a<b<cB.b<c<aC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设变量x,y满足约束条件$\left\{\begin{array}{l}x+y-2≥0\\ x-y-2≤0\\ y≥1\end{array}\right.$,则目标函数z=x+2y(  )
A.有最小值3,无最大值B.有最小值5,无最大值
C.有最大值3,无最小值D.有最大值5,无最小值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若函数$f(x)=1+\frac{2}{x-1}$,x∈[2,4),则f(x)的值域是($\frac{5}{3}$,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.等差数列{an}的公差为d,关于x的不等式a1x2+($\frac{d}{2}$-a1)x+c≥0的解集为[$\frac{1}{3}$,$\frac{4}{5}$],则使数列{an}的前n项和Sn最小的正整数n的值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an},其前n项和为Sn
(1)若{an}是公差为d(d>0)的等差数列,且{$\sqrt{{S}_{n}+n}$}也为公差为d的等差数列,求数列{an}的通项公式;
(2)若数列{an}对任意m,n∈N*,且m≠n,都有$\frac{2{S}_{m+n}}{m+n}$=am+an+$\frac{{a}_{m}-{a}_{n}}{m-n}$,求证:数列{an}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=sin(2x+$\frac{π}{6}$)+sin(2x-$\frac{π}{6}$)+cos2x+a.(其中a∈R,a为常数).
(1)求函数的最小正周期和函数的单调递增区间;
(2)若x∈[0,$\frac{π}{2}$]时,f(x)的最小值为-3,求a的值.

查看答案和解析>>

同步练习册答案