分析 (1)利用递推关系得(an+an-1)(an-an-1-2)=0,数列{an}的各项均为正数,可得an-an-1=2,n≥2,利用等差数列的通项公式即可得出.
(2)由题意得$k>{({\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_n}{a_{n+1}}}}})_{max}}$,利用$\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{{({2n-1})({2n+1})}}=\frac{1}{2}({\frac{1}{2n-1}-\frac{1}{2n+1}})$,“裂项求和”方法即可得出.
(3)an=2n-1.假设存在正整数m,k,使得am,am+5,ak成等比数列,即${a_{m+5}}^2={a_m}•{a_k}$.可得$2k-1=\frac{{{{({2m+9})}^2}}}{2m-1}=2m+19+\frac{100}{2m-1}$,进而得出..
解答 解:(1)∵${S_n}={({\frac{{{a_n}+1}}{2}})^2}$,∴${S_{n-1}}={({\frac{{{a_{n-1}}+1}}{2}})^2},n≥2$,
两式相减得${a_n}={({\frac{{{a_n}+1}}{2}})^2}-{({\frac{{{a_{n-1}}+1}}{2}})^2},n≥2$,
整理得(an+an-1)(an-an-1-2)=0,
∵数列{an}的各项均为正数,∴an-an-1=2,n≥2,
∴{an}是公差为2的等差数列,
又${S_1}={({\frac{{{a_1}+1}}{2}})^2}$得a1=1,∴an=2n-1.
(2)由题意得$k>{({\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_n}{a_{n+1}}}}})_{max}}$,
∵$\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{{({2n-1})({2n+1})}}=\frac{1}{2}({\frac{1}{2n-1}-\frac{1}{2n+1}})$,
∴$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{2}[{({1-\frac{1}{3}})+({\frac{1}{3}-\frac{1}{5}})+…+({\frac{1}{2n-1}-\frac{1}{2n+1}})}]$=$\frac{1}{2}({1-\frac{1}{2n+1}})<\frac{1}{2}$,
∴$k≥\frac{1}{2}$.
(3)∵an=2n-1.
假设存在正整数m,k,使得am,am+5,ak成等比数列,即${a_{m+5}}^2={a_m}•{a_k}$
即(2m+9)2=(2m-1)•(2k-1),
∵(2m-1)≠0,∴$2k-1=\frac{{{{({2m+9})}^2}}}{2m-1}=2m+19+\frac{100}{2m-1}$,
∵2k-1∈Z,∴2m-1为100的约数,
∴2m-1=1,m=1,k=61.
点评 本题考查了等差数列与等比数列的通项公式与求和公式、数列的单调性、“裂项求和”方法、数列递推关系,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8π | B. | 24π | C. | 16π | D. | 32π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{3}{2}$,$\frac{3}{4}$) | B. | [$\frac{1}{2}$,3) | C. | (-$\frac{3}{2}$,3) | D. | [$\frac{1}{2}$,$\frac{3}{4}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com