精英家教网 > 高中数学 > 题目详情
15.在三棱锥P-ABC中,已知∠ABC=90°,AC=2$\sqrt{2}$,PA⊥平面ABC,且PA=4,则当该三棱锥体积最大时,其外接球的表面积为(  )
A.B.24πC.16πD.32π

分析 三棱锥的体积为Vp-ABC=$\frac{1}{3}$×PA×S△ABC,要使Vp-ABC取得最大,则S△ABC 取最大值;
又由于AB2+BC2≥2AB•BC⇒AB•BC≤4,当且仅当AB=BC时取最大值,S△ABC 的最大值为2;
所以,△ABC为等腰直角三角形,则球心O所在直线垂直过AC线段中心M,且与PA平行,即可判断球心位置.

解答 解:由题意知,PA⊥平面ABC,且PA=4;
三棱锥的体积为Vp-ABC=$\frac{1}{3}$×PA×S△ABC
要使Vp-ABC取得最大,则S△ABC 取最大值;
∵∠ABC=90°,AC=2$\sqrt{2}$;
∵AB2+BC2≥2AB•BC⇒AB•BC≤4;
∴S△ABC 的最大值为$\frac{1}{2}$×4=2,当且仅当AB=BC时取最大值;
所以,△ABC为等腰直角三角形,
则球心O所在直线垂直过AC线段中心M,且与PA平行;
∵AC=2$\sqrt{2}$⇒AM=$\sqrt{2}$;
设球半径为R,则OA=OP,OM=2;
由勾股定理知:R2=$(\sqrt{2})^{2}$+22⇒R=$\sqrt{6}$;
外接球表面积为S=4πR2=24π;
故选:B.

点评 本题主要考查了三棱锥的体积求法,函数最值问题以及分析球心位置,属中等题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.直线$\left\{{\begin{array}{l}{x=3+tcos{{230}°}\;\;}\\{y=-1+tsin{{230}°}}\end{array}}\right.$(t为参数)的倾斜角是(  )
A.30°B.45°C.50°D.60°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,是△ABC边长为1的正三角形,M,N分别是AB,AC边上的点,线段MN过△ABC的重心,设∠MGA=α,$\frac{π}{3}$≤α≤$\frac{2π}{3}$.
(Ⅰ)当α=$\frac{2π}{3}$时,求MG的长;
(Ⅱ)分别记△AGM,△AGN的面积为S1,S2,试将S1,S2表示为α的函数;
(Ⅲ)设y=$\frac{1}{{{S}_{1}}^{2}}$+$\frac{1}{{{S}_{2}}^{2}}$,求y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,a=$\sqrt{3}$b,A=120°,则B的大小为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.长方体ABCD-A1B1C1D1中,AB=1,BC=2,AA1=3,点M是BC中点,点P∈AC1,Q∈MD,则|PQ|长度最小值为$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1,(a>b>0),F1,F2分别为椭圆的左,右焦点,如图过F2且斜率为1的直线与椭圆相交于P,Q两点,且$\frac{{|P{F_2}|}}{{|Q{F_2}|}}$=2,则椭圆的离心率e=(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.各项均为正数的数列{an}中,前n项和${S_n}={({\frac{{{a_n}+1}}{2}})^2}$.
(1)求数列{an}的通项公式;
(2)若$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_n}{a_{n+1}}}}$<k恒成立,求k的取值范围;
(3)是否存在正整数m,k,使得am,am+5,ak成等比数列?若存在,求出m和k的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,池塘的边缘为曲线段OMB,它可以近似看成是函数f(x)=x2在0≤x≤6的图象,BA垂直于x轴于点A,现要建一个以A为直角的观光站台△APQ,其中斜边PQ与曲线段OMB相切于点M(t,t2),切线PQ交x轴于点P,交线段AB于点Q,图中的阴影部分种植草坪.
(1)将△QAP的面积表达为t的函数;
(2)求草坪的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}的前n项和为Sn,a4+a7=20,对任意的k∈N都有Sk+1=3Sk+k2,数列{bn}的前n项和为Tn=2n+1-2.
(I) 求数列{an}的通项公式;
(Ⅱ)求数列a1bn,a2bn-1,…,an-1b2,anb1各项的和Gn

查看答案和解析>>

同步练习册答案