| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{2}}}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
分析 设P,Q两点的坐标为(x1,y1),(x2,y2),由椭圆的第二定义可知:丨PF2丨=a-ex1,丨QF2丨=a-ex2,则a2=c(2x2-x1),将直线AB的方程代入椭圆方程,即可求得x1和x2,代入由c2=a2-b2,根据离心率的取值范围,即可求得椭圆的离心率e.
解答 解:设P,Q两点的坐标为(x1,y1),(x2,y2),
由椭圆的第二定义可知:丨PF2丨=a-ex1,丨QF2丨=a-ex2,
∴x2>x1,
由$\frac{{|P{F_2}|}}{{|Q{F_2}|}}$=2,即丨PF2丨=2丨QF2丨,
由椭圆的离心率e=$\frac{c}{a}$,
∴a=$\frac{c}{a}$(2x2-x1),整理得:a2=c(2x2-x1),
由题意可知:直线PQ的方程为:y=x-c,
$\left\{\begin{array}{l}{y=x-c}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$,整理得:(a2+b2)x2-2a2cx+a2c2-a2b2=0,
由椭圆的性质可知:c2=a2-b2,
代入解得:x1=$\frac{{a}^{2}c-\sqrt{2}a{b}^{2}}{{a}^{2}+{b}^{2}}$,x2=$\frac{{a}^{2}c+\sqrt{2}a{b}^{2}}{{a}^{2}+{b}^{2}}$,
代入整理得:3$\sqrt{2}$ac3-2a2c2-3$\sqrt{3}$a3c+2a4=0,等式两边同除以a4,
整理得:3$\sqrt{2}$e3-2e2-3$\sqrt{2}$e+2=0,即(e-1)[3$\sqrt{2}$e2+(3$\sqrt{2}$-2)e-2]=0,
解得:e=±1,e=$\frac{\sqrt{2}}{3}$,
由0<e<1,
∴e=$\frac{\sqrt{2}}{3}$,
故选:B.
点评 本题考查椭圆的离心率的求法,考查椭圆的第二定义的应用,直线与椭圆的位置关系,考查计算能力,属于难题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8π | B. | 24π | C. | 16π | D. | 32π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3≤a<5 | B. | 0<a<4 | C. | 4<a<5或0≤a≤3 | D. | 3<a<5或0≤a<3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com