精英家教网 > 高中数学 > 题目详情
3.在△ABC中,a=$\sqrt{3}$b,A=120°,则B的大小为(  )
A.30°B.45°C.60°D.90°

分析 由已知利用正弦定理,特殊角的三角函数值可求sinB=$\frac{1}{2}$,结合B的范围即可得解B的值.

解答 解:∵a=$\sqrt{3}$b,A=120°,
∴由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}$,可得:sinB=$\frac{1}{2}$,
又∵B∈(0°,60°),
∴B=30°.
故选:A.

点评 本题主要考查了正弦定理,特殊角的三角函数值在解三角形中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若集合M={x∈Z||x|≤2},N={x|x2+2x-3<0},则M∩N=(  )
A.[-2,1)B.[-2,1]C.{-2,-1,0}D.{-1,0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知如下等式:2+4=6;8+10+12=14+16;18+20+22+24=26+28+30;…以此类推,则2018会出现在第(  )个等式中.
A.33B.30C.31D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)若A⊆B,求实数m的取值范围;
(2)若A∩B=(1,2),求实数m的取值范围;
(3)若A∩B=∅,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设二阶矩阵A,B满足A-1=$[\begin{array}{l}{1}&{2}\\{3}&{2}\end{array}]$,BA=$[\begin{array}{l}{1}&{0}\\{0}&{1}\end{array}]$,求矩阵B的特征值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在四棱锥O-ABCD中,底面ABCD是边长为1的菱形,∠ABC=45°,OA⊥面ABCD,OA=2,M为OA的中点,N为BC的中点.
(1)证明:直线MN∥平面OCD;
(2)求异面直线AB与MD所成角的大小;
(3)求点B到平面OCD的距离.
(4)求二面角O-CD-A的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在三棱锥P-ABC中,已知∠ABC=90°,AC=2$\sqrt{2}$,PA⊥平面ABC,且PA=4,则当该三棱锥体积最大时,其外接球的表面积为(  )
A.B.24πC.16πD.32π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若y=f(x)是定义在R上周期为2的周期函数,且f(x)是偶函数,当x∈[0,1]时,f(x)=2x-1,则函数g(x)=f(x)-log3(x+1)的零点个数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知a为实数,函数f(x)=(x-a)2+|x-a|-a(a-1).
(Ⅰ)若f(0)≤1,求a的取值范围;
(Ⅱ)当a≥2时,讨论f(x)+$\frac{4}{x}$在区间(0,+∞)内零点的个数.

查看答案和解析>>

同步练习册答案