精英家教网 > 高中数学 > 题目详情
7.若函数f(x)=$\left\{\begin{array}{l}{log_a}x,0<x≤1\\(4-a){x^2}-ax+1,x>1\end{array}$在(0,+∞)上单调递增,则实数a的取值范围是(  )
A.(1,4)B.$[\frac{5}{2},4)$C.$(1,\frac{5}{2}]$D.$[\frac{5}{2},\frac{8}{3}]$

分析 根据f(x)在(0,+∞)上为增函数,从而f(x)在(0,1]和(1,+∞)上都是增函数,结合增函数的定义即可得到$\left\{\begin{array}{l}{a>1}\\{4-a>0}\\{\frac{a}{2(4-a)}≤1}\\{lo{g}_{a}1≤(4-a)•{1}^{2}-a+1}\end{array}\right.$,解该不等式便可得出实数a的取值范围.

解答 解:根据条件:
$\left\{\begin{array}{l}{a>1}\\{4-a>0}\\{\frac{a}{2(4-a)}≤1}\\{lo{g}_{a}1≤(4-a)•{1}^{2}-a+1}\end{array}\right.$;
解得,$1<a≤\frac{5}{2}$;
∴a的取值范围是$(1,\frac{5}{2}]$.
故选C.

点评 考查分段函数单调性的判断,对数函数和二次函数的单调性,以及增函数的定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.数列{n+2n}中的第4项是20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数y=f(x)与y=F(x)的图象关于y轴对称,当函数y=f(x)和y=F(x)在区间[a,b]同时递增或同时递减时,把区间[a,b]叫做函数y=f(x)的“不动区间”.若区间[1,2]为函数f(x)=|2x-t|的“不动区间”,则实数t的取值范围是(  )
A.(0,2]B.[$\frac{1}{2}$,+∞)C.[$\frac{1}{2}$,2]D.[$\frac{1}{2}$,2]∪[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)为二次函数且f(x+1)+f(x-1)=2x2-4x
(1)求f(x)的解析式.(2)当x∈[$\frac{1}{2}$,2]时求f (2x)的最大与最小值.
(3)判断函数g(x)=$\frac{f(x)}{x}$在(0,+∞)上的单调性并加以证明.(可用导数证明)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知$f(x)={3^x}-{log_{\frac{1}{3}}}$x,实数a、b、c满足f(a)•f(b)•f(c)<0,且0<a<b<c,若实数x0是函数f(x)的一个零点,那么下列不等式中,不可能成立的是(  )
A.x0<aB.x0>bC.x0<cD.x0>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数y=Asin(ωx+φ) (A>0,ω>0,0<φ<π)的最小正周期为$\frac{2π}{3}$,最小值为-2,图象过($\frac{5π}{9}$,0)
(1)求该函数的解析式.
(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数f(x)=$\left\{\begin{array}{l}{aln(x+1),x≥0}\\{\frac{1}{3}{x}^{3}-ax,x<0}\end{array}\right.$,g(x)=ex-1.
(1)若函数y=f(x)的图象在点(1,f(1))与点(-1,f(-1))处的切线相互垂直,求a的值;
(2)当a>0时,讨论函数f(x)与g(x)的图象公共点的个数;
(3)设数列${b_n}={e^{\frac{1}{n}}}({n∈N{^*}})$,其前n项和为Sn,证明:Sn>ln(n+1)+n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知f(x)为R上的减函数,则满足f($\frac{1}{|x|}$)<f(1)的实数x的取值范围是(-1,0)∪(0,1);.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.命题“?x0∈(0,+∞),lnx0>3-x0”的否定是(  )
A.“?x0∈(0,+∞),lnx0≤3-x0B.?x∈(0,+∞),lnx>3-x
C.?x∈(0,+∞),lnx<3-xD.?x∈(0,+∞),lnx≤3-x

查看答案和解析>>

同步练习册答案