精英家教网 > 高中数学 > 题目详情
15.如图是一个算法流程图,则输出的n的值为(  )
A.3B.4C.5D.6

分析 由已知中的程序语句,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

解答 解:模拟程序的运行,可得
n=0
执行循环体,n=1
满足条件21≤16,执行循环体,n=2
满足条件22≤16,执行循环体,n=3
满足条件23≤16,执行循环体,n=4
满足条件24≤16,执行循环体,n=5
不满足条件25≤16,退出循环,输出n的值为5.
故选:C.

点评 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知sin(α+β)=$\frac{4}{5}$,cos(α-β)=-$\frac{4}{5}$,其中α∈(0,$\frac{π}{2}$),β∈($\frac{π}{2}$,π),求cos2α,cos2β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知$\overrightarrow{a}$=(2,-3),$\overrightarrow{b}$=(-3,4),则$\overrightarrow{a}$-$\overrightarrow{b}$在$\overrightarrow{a}$+$\overrightarrow{b}$方向上的投影为-6$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若一扇子的弧长等于其所在圆的内接正方形边长,则其圆心角α(0<α<π)的弧度数为(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知直线l过点P(2,-1),且与直线2x+y-l=0互相垂直,则直线l的方程为(  )
A.x-2y=0B.x-2y-4=0C.2x+y-3=0D.2x-y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若$a={log_2}0.3,b={2^{0.3}},c={0.3^2}$,则执行如图所示的程序框图,输出的是(  )
A.cB.bC.aD.$\frac{a+b+c}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知α∈[0,$\frac{π}{2}$],且 sin(α-$\frac{π}{4}$)=$\frac{1}{2}$.
(1)求 cos(α-$\frac{π}{4}$)及α的值;
(2)求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.亳州市某校为了解学生数学学习的情况,采用分层抽样的方法从高一1000人、高二1200人、高三n人中,抽取72人进行问卷调查,已知高二被抽取的人数为24,那么n=(  )
A.800B.1000C.1200D.1400

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某单位N名员工参加“我爱阅读”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50),得到的频率分布直方图如图所示.下面是年龄的分布表:
区间[25,30)[30,35)[35,40)[40,45)[45,50)
人数28ab
(Ⅰ)求正整数a,b,N的值;
(Ⅱ)现要从年龄低于40岁的员工用分层抽样的方法抽取42人,则年龄在第1,2,3组得员工人数分别是多少?
(Ⅲ)为了估计该单位员工的阅读倾向,现对该单位所有员工中按性别比例抽查的40人是否喜欢阅读国学类书籍进行了调查,调查结果如下所示:(单位:人)
喜欢阅读国学类 不喜欢阅读国学类 合计
 男 14 4 18
 女 8 14 22
 合计 22 18 40
根据表中数据,我们能否有99%的把握认为该位员工是否喜欢阅读国学类书籍和性别有关系?
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
P(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

查看答案和解析>>

同步练习册答案