【题目】一个单位有职工80人,其中业务人员56人,管理人员8人,服务人员16人,为了解职工的某种情况,决定采取分层抽样的方法。抽取一个容量为10的样本,每个管理人员被抽到的概率为( )
A.
B.
C.
D.
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)的离心率为 ,b= .
(1)求椭圆C的标准方程;
(2)F1 , F2分别为椭圆的左、右焦点,A、B为椭圆的左、右顶点,P为椭圆C上的点,求证:以PF2为直径的圆与以AB为直径的圆相切;
(3)过左焦点F1作互相垂直的弦MN与GH,判断MN的中点与GH的中点所在直线l是否过x轴上的定点,如果是,求出定点坐标,如果不是,说出理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC中,a、b、c分别为∠A,∠B,∠C的对边,如果a、b、c成等差数列,∠B=30°,△ABC的面积为 ,那么b等于( )
A.
B.1+
C.
D.2+
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图像在点处的切线方程为.
(1)求实数的值;
(2)设是的增函数.
(i)求实数的最大值;
(ii)当取最大值时,是否存在点,使得过点且与曲线相交的任意一条直线所围成的两个封闭图形的面积总相等?若存在,求出点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一盒中装有各色球12只,其中5个红球,4个黑球,2个白球,1个绿球;从中随机取出1球.求:
(1)取出的1球是红球或黑球的概率;
(2)取出的1球是红球或黑球或白球的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的参数方程为(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,已知直线的极坐标方程为, .
(Ⅰ)若直线与曲线交于不同的两点, ,当时,求的值;
(Ⅱ)当时,求曲线关于直线对称的曲线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线: 的焦点也是椭圆: ()的一个焦点, 与的公共弦长为.
(Ⅰ)求的方程
(Ⅱ)过点的直线与相交于, 两点,与相交于, 两点,且, 同向.若求直线的斜率;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( )
A.9.4,0.484
B.9.4,0.016
C.9.5,0.04
D.9.5,0.016
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com