精英家教网 > 高中数学 > 题目详情
19.设常数a>1,实数x,y满足logax+2logxa+logxy=-3,若y的最大值为$\sqrt{2}$,则x的值为$\frac{1}{8}$.

分析 实数x,y满足logax+2logxa+logxy=-3,化为logax+$\frac{2}{lo{g}_{a}x}$+$\frac{lo{g}_{a}y}{lo{g}_{a}x}$=-3,令logax=t,化为:logay=$-(t+\frac{3}{2})^{2}$+$\frac{1}{4}$,再利用二次函数的单调性、对数的运算性质即可得出.

解答 解:实数x,y满足logax+2logxa+logxy=-3,
化为logax+$\frac{2}{lo{g}_{a}x}$+$\frac{lo{g}_{a}y}{lo{g}_{a}x}$=-3,
令logax=t,
化为:logay=$-(t+\frac{3}{2})^{2}$+$\frac{1}{4}$,
∵a>1,∴当t=-$\frac{3}{2}$时,y取得最大值$\sqrt{2}$,
∴$lo{g}_{a}\sqrt{2}$=$\frac{1}{4}$,
解得a=4.
∴log4x=-$\frac{3}{2}$,
∴x=${4}^{-\frac{3}{2}}$=$\frac{1}{8}$.
故答案为:$\frac{1}{8}$.

点评 本题考查了二次函数的单调性、对数的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.一个四棱锥的侧棱长都相等,底面是正方形,其主视图如图所示,该四棱锥侧面积等于(  )
A.20B.5$\sqrt{2}$C.4($\sqrt{5}$+1)D.4$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2sinx+a+3的图象过原点.
(1)求a的值和f(x)的值域;
(2)设ω>0,若y=f(ωx)在区间[-$\frac{π}{2}$,$\frac{2π}{3}$]是增函数,求ω的取值范围;
(3)设|θ|<$\frac{π}{2}$,若对x取一切实数,不等式4+f(x+θ)f(x-θ)>2f(x)都成立,求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,抛物线C1:x2=2py(p>0)与椭圆C2:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个交点为T($\frac{4}{3}$,$\frac{1}{3}$),F(1,0)为椭圆C2的右焦点.
(1)求抛物线C1与椭圆C2的方程;
(2)设M(x0,y0)是抛物线C1上任意一点,过M作抛物线C1的切线l,直线l与椭圆C2,交于A、B两点,定点N(0,$\frac{2}{3}$),求△NBA的面积的最大值,并求出此时M点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知命题p:若a>b,则a2>b2;q:“x≤1”是“x2+2x-3≤0”的必要不充分条件.则下列命题是真命题的是(  )
A.p∧qB.¬p∧qC.¬p∧¬qD.p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某中学高三文科班从甲、乙两个班各选出7名学生参加文史知识竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的平均分是85,乙班学生成绩的中位数是83,则x+y的值为(  )
A.8B.7C.9D.168

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆$\frac{{x}^{2}}{2}$+y2=1,过点P(1,0)作直线l,使l交椭圆于A,B两点,且交y轴于Q点,若|AQ|=|BP|.求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.?ABCD的一组邻边所在直线的方程分别为x+y+1=0与3x-y+3=0,对角线AC,BD的交点坐标为(2,1),求另外两边所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某气象站观测点记录的连续4天里,AQI指数M与当天的空气水平可见度y(单位cm)的情况如下表1:
M900700300100
y0.53.56.59.5
哈尔滨市某月AQI指数频数分布如下表2:
M[0,200](200,400](400,600](600,800](800,1000]
频数361263
(1)设x=$\frac{M}{100}$,根据表1的数据,求出y关于x的回归方程;
(参考公式:$\hat y=\hat bx+\hat a$;其中$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{{x_i}^2}-n{{\overline x}^2}}}$,$\overline a=\overline y-\hat b\overline x$)
(2)小张开了一家洗车店,经统计,当M不高于200时,洗车店平均每天亏损约2000元;当M在200至400时,洗车店平均每天收入约4000元;当M大于400时,洗车店平均每天收入约7000元;根据表2估计小张的洗车店该月份平均每天的收入.

查看答案和解析>>

同步练习册答案