精英家教网 > 高中数学 > 题目详情

【题目】已知函数,(其中 为自然对数的底数)

(Ⅰ)求函数的极值;

(Ⅱ)当时,若直线与曲线没有公共点,求的最大值.

【答案】(Ⅰ)见解析;(Ⅱ)1.

【解析】试题分析:(1)求出的导数,讨论当时, 无极值;当时,由,得,求得单调区间,可得处取到极小值,且极小值为,无极大值;(2)令,则直线与曲线没有公共点方程上没有实数解,分讨论即可得答案.

试题解析:

(ⅰ)当时, 上为增函数,所以函数无极值;

(ⅱ)当时, ,得

时, ;当时,

所以函数上单调递减,在上单调递增

处取得极小值,且极小值为,无极大值.

(Ⅱ)当时,

则若直线与曲线没有公共点,等价于方程上没有实数根

时,

又函数的图象在定义域上连续,可知方程上至少有一实数根,与方程上没有实数根矛盾,故

时, ,知方程上没有实数根

所以的最大值为1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】经过原点的直线与椭圆交于两点,点为椭圆上不同于的一点,直线的斜率均存在,且直线的斜率之积为.

(1)求椭圆的离心率;

(2)设分别为椭圆的左、右焦点,斜率为的直线经过椭圆的右焦点,且与椭圆交于两点.若点在以为直径的圆内部,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某天数学课上,你突然惊醒,发现黑板上有如下内容:
例:求x3﹣3x,x∈[0,+∞)的最小值.解:利用基本不等式a+b+c≥3 ,得到x3+1+1≥3x,于是x3﹣3x=x3+1+1﹣3x﹣2≥3x﹣3x﹣2=﹣2,当且仅当x=1时,取到最小值﹣2
(1)老师请你模仿例题,研究x4﹣4x,x∈[0,+∞)上的最小值;
(提示:a+b+c+d≥4
(2)研究 x3﹣3x,x∈[0,+∞)上的最小值;
(3)求出当a>0时,x3﹣ax,x∈[0,+∞)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,在区间(0,1)上是增函数的是(
A.y=|x|
B.y=3﹣x
C.y=
D.y=﹣x2+4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知左焦点为F(﹣1,0)的椭圆过点E(1, ).过点P(1,1)分别作斜率为k1 , k2的椭圆的动弦AB,CD,设M,N分别为线段AB,CD的中点.
(1)求椭圆的标准方程;
(2)若P为线段AB的中点,求k1
(3)若k1+k2=1,求证直线MN恒过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】移动公司在春节正月初八这天推出4G套餐,对这天办理套餐的客户进行优惠,优惠方案如下:选择套餐一的客户可获得优惠200元,选择套餐二的客户可获得优惠500元,选择套餐三的客户可获得优惠300元. 初八当天参与活动的人数统计结果如图所示,

(Ⅰ)从参加当天活动的人中任选一人,求此人获得优惠金额不低于300元的概率(将频率视为概率);

(Ⅱ)若采用分层抽样的方式从参加活动的客户中选出6人,再从该6人中随机选两人,求这两人获得相等优惠金额的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017安徽马鞍山二模】已知动圆过定点,且在轴上截得的弦长为4,记动圆圆心的轨迹为曲线C

(Ⅰ)求直线与曲线C围成的区域面积;

(Ⅱ)点在直线上,点,过点作曲线C的切线,切点分别为,证明:存在常数,使得,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递减,若f(log2a)+f(2log a)≥2f(﹣1),则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:

编号n

1

2

3

4

5

成绩xn

70

76

72

70

72


(1)求第6位同学的成绩x6 , 及这6位同学成绩的标准差s;
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.

查看答案和解析>>

同步练习册答案