7£®ÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬Èô¶ÔÈÎÒâµÄÕýÕûÊýn£¬×Ü´æÔÚÕýÕûÊým£¬Ê¹µÃSn=am£¬Ôò³ÆÊýÁÐ{an}ÊÇ¡°EÊýÁС±£®
£¨1£©ÊýÁÐ{an}µÄǰnÏîºÍSn=3n£¨n¡ÊN*£©£¬ÅжÏÊýÁÐ{an}ÊÇ·ñΪ¡°EÊýÁС±£¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©ÊýÁÐ{bn}ÊǵȲîÊýÁУ¬ÆäÊ×Ïîb1=1£¬¹«²îd£¼0£¬ÊýÁÐ{bn}ÊÇ¡°EÊýÁС±£¬ÇódµÄÖµ£»
£¨3£©Ö¤Ã÷£º¶ÔÈÎÒâµÄµÈ²îÊýÁÐ{an}£¬×Ü´æÔÚÁ½¸ö¡°EÊýÁС±{bn}ºÍ{cn}£¬Ê¹µÃan=bn+cn£¨n¡ÊN*£©³ÉÁ¢£®

·ÖÎö £¨1£©ÔËÓÃa1=S1£¬an=Sn-Sn-1£¬£¨n£¾1£©£¬¿ÉµÃan£¬ÔÙÓÉж¨Òå¼´¿ÉÅжϣ»
£¨2£©ÔËÓõȲîÊýÁеÄͨÏʽºÍÇóºÍ¹«Ê½£¬¿ÉµÃm£¬ÔÙÓÉж¨Òå¼´¿ÉÇóµÃd=-1£»
£¨3£©Èôdn=bn£¨bÊdz£Êý£©£¬ÇóµÃǰnÏîºÍ£¬Éèbn=na1£¬cn=£¨d-a1£©£¨n-1£©£¬ÔÙÓÉж¨Òå¿ÉµÃÔòan=bn+cn£¬¼´¿ÉµÃÖ¤£®

½â´ð ½â£º£¨1£©ÓÉSn=3n£¨n¡ÊN*£©£¬ÇÒa1=S1£¬an=Sn-Sn-1£¬£¨n£¾1£©£¬
¿ÉµÃan=$\left\{\begin{array}{l}{3£¬n=1}\\{2•{3}^{n-1}£¬n¡Ý2}\end{array}\right.$£¬µ±n=2ʱ£¬9=2•3n-1£¬µÃm∉N*£¬ËùÒÔ²»ÊÇ¡°EÊýÁС±£»
£¨2£©ÓÉÊýÁÐ{bn}ÊǵȲîÊýÁУ¬ÆäÊ×Ïîb1=1£¬¹«²îd£¼0£¬
¿ÉµÃn+$\frac{n£¨n-1£©}{2}$d=1+£¨m-1£©d£¬¼´Îªm=$\frac{n-1}{d}$+$\frac{n£¨n-1£©}{2}$+1£¬
$\frac{n£¨n-1£©}{2}$Ϊ·Ç¸ºÕûÊý£¬ËùÒÔÊ×ÏÈ$\frac{n-1}{d}$ÒªºãΪÕûÊý£¬dΪËùÓзǸºÕûÊýµÄ¹«Ô¼ÊýÇÒd£¼0£¬
ËùÒÔd=-1£»
£¨3£©Ö¤Ã÷£ºÊ×ÏÈ£¬Èôdn=bn£¨bÊdz£Êý£©£¬
ÔòÊýÁÐ{dn}ǰnÏîºÍΪSn=$\frac{n£¨n-1£©}{2}$bÊÇÊýÁÐ{dn}ÖеĵÚ$\frac{n£¨n-1£©}{2}$Ï
Òò´Ë{dn}ÊÇ¡°EÊýÁС±£¬
¶ÔÈÎÒâµÄµÈ²îÊýÁÐ{an}£¬an=a1+£¨n-1£©d£¨dΪ¹«²î£©£¬
Éèbn=na1£¬cn=£¨d-a1£©£¨n-1£©£¬
Ôòan=bn+cn£¬
¶øÊýÁÐ{bn}£¬{cn}¶¼ÊÇ¡°EÊýÁС±£¬
¹Ê¶ÔÈÎÒâµÄµÈ²îÊýÁÐ{an}£¬×Ü´æÔÚÁ½¸ö¡°EÊýÁС±{bn}ºÍ{cn}£¬
ʹµÃan=bn+cn£¨n¡ÊN*£©³ÉÁ¢£®

µãÆÀ ±¾Ì⿼²éж¨ÒåµÄÀí½âºÍÔËÓ㬿¼²éµÈ²îÊýÁеÄͨÏîºÍÇóºÍ£¬¿¼²éÍÆÀíºÍÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖª¡÷ABCÖУ¬¡ÏA=120¡ã£¬AB=3£¬BC=7£¬ÔòAC=5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2017½ìºþÄϺâÑô°ËÖиßÈýÉÏѧÆÚÔ¿¼¶þÊýѧ£¨Àí£©ÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

ÒÑÖªº¯Êý£¬ÔòÏÂÁÐÅжÏÕýÈ·µÄÊÇ£¨ £©

A£®´Ëº¯ÊýµÄ×îСÕýÖÜÆÚΪ£¬ÆäͼÏñµÄÒ»¸ö¶Ô³ÆÖÐÐÄÊÇ

B£®´Ëº¯ÊýµÄ×îСÕýÖÜÆÚΪ£¬ÆäͼÏñµÄÒ»¸ö¶Ô³ÆÖÐÐÄÊÇ

C£®´Ëº¯ÊýµÄ×îСÕýÖÜÆÚΪ£¬ÆäͼÏñµÄÒ»¸ö¶Ô³ÆÖÐÐÄÊÇ

D£®´Ëº¯ÊýµÄ×îСÕýÖÜÆÚΪ£¬ÆäͼÏñµÄÒ»¸ö¶Ô³ÆÖÐÐÄÊÇ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªf£¨x£©=kx+2£¬²»µÈʽ|f£¨x£©|£¼3µÄ½â¼¯Îª£¨-1£¬5£©£¬²»µÈʽ$\frac{x}{f£¨x£©}¡Ý1$µÄ½â¼¯A£®
£¨1£©Ç󼯺ÏA£»
£¨2£©É躯Êýg£¨x£©=log2£¨ax2-2x+2£©µÄ¶¨ÒåÓòΪB£¬ÈôA¡ÉB¡Ù∅£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªf£¨x£©=$\frac{x+1}{3x-1}$£®
£¨1£©Çóf£¨f£¨x£©£©£»
£¨2£©¶Ô²ÎÊýaµÄÄÄЩֵ£¬·½³Ì|x|+|$\frac{x+1}{3x-1}$|=aÕýºÃÓÐ3¸öʵÊý½â£»
£¨3£©ÉèbΪÈÎÒâʵÊý£¬Ö¤Ã÷£ºx+$\frac{2x-7}{x+1}$-$\frac{x+7}{x-2}$=b¹²ÓÐ3¸ö²»Í¬µÄʵÊý½âx1£¬x2£¬x3£¬²¢ÇÒx1+x2+x3=b£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Èçͼ£¬ÈýÀâ×¶P-ABCµÄµ×ÃæÊDZ߳¤Îª2µÄµÈ±ßÈý½ÇÐΣ¬Èô$PA=PB=\sqrt{2}$£¬¶þÃæ½ÇP-BA-CµÄ´óСΪ60¡ã£¬ÔòÈýÀâ×¶P-ABCµÄÍâ½ÓÇòµÄÃæ»ýµÈÓÚ$\frac{52}{9}¦Ð$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÔÚÊýÁÐ{an}ÖУ¬an=$\frac{1}{1+{2}^{2011-2n}}$£¬ÔòS=a1+a2+¡­+a2010µÄÖµÊÇ1005£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖªA£¨2£¬3£©£¬B£¨4£¬-1£©£¬P£¨2£¬0£©£¬Çó£º
£¨1£©$\overrightarrow{AP}•\overrightarrow{BP}$µÄÖµ£»
£¨2£©¡ÏAPBµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖª$m¡Ü\frac{2}{3}{x^2}-2x+3¡Ün£¨{m¡Ùn}£©$µÄ½â¼¯Îª[m£¬n]£¬Ôòm+nµÄֵΪ3£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸