精英家教网 > 高中数学 > 题目详情
若直角坐标平面内A、B两点满足条件:
①点A、B都在f(x)的图象上;
②点A、B关于原点对称,则对称点对(A、B)是函数的一个“兄弟点对”(点对(A、B)与(B、A)可看作一个“兄弟点对”).
已知函数f(x)=
cosx (x≤0)
lgx (x>0)
,则f(x)的“兄弟点对”的个数为(  )
A、2B、3C、4D、5
考点:函数的图象
专题:作图题,函数的性质及应用
分析:设P(x,y)(x<0),则点P关于原点的对称点为(-x,-y),可以得出cosx=-ln(-x),此方程根的个数,即y=cosx与y═-ln(-x)图象的交点个数,作出两个函数的图象,由图得出即可.
解答:解:设P(x,y)(x<0),则点P关于原点的对称点为(-x,-y),于是,cosx=-ln(-x),只需判断方程根的个数,即y=cosx与y═-ln(-x)图象的交点个数,函数图象如下:所以f(x)的“兄弟点对”的个数为5个.

由图知,所以f(x)的“兄弟点对”的个数为5个.
故选D.
点评:本题考查图象法解题,利用函数的图象帮助解决方程根的个数问题是数形结合思想的常见应用,作答此类题时要注意灵活转化为图象问题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在平面直角坐标系xOy中,直线l的参数方程是
x=
2
2
t
y=
2
2
t+4
2
(t是参数),以原点O为极点,Ox为极轴建立极坐标系,圆C的极坐标方程为p=2cos(θ+
π
4
).
(1)求圆心C的直角坐标;
(2)由直线l上的点向圆C引切线,求切线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,直线l的参数方程为
x=2-t
y=
3
t
(t
为参数),P.Q分别为直线l与x轴、y轴的交点,线段PQ的中点为M.
(I)求直线l的直角坐标方程;
(Ⅱ)以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标和直线OM的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正△ABC的中心位于点G(0,1),A(0,2),动点P从A点出发沿△ABC的边界按逆时针方向运动,设旋转的角度∠AGP=x(0≤x≤2π),向量
OP
a
=(1,0)方向的射影为y(O为坐标原点),则y关于x的函数y=f(x)的图象是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数f(x)图象中,满足f(
1
4
)>f(3)>f(2)的只可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=ax2+bx与函数y=xa+b(a≠0),在同一坐标系中的图象可能为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sinx+xcosx的大致图象是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,圆C:x2+(y-1)2=1与y轴的上交点为A,动点P从A点出发沿圆C按逆时针方向运动,设旋转的角度∠ACP=x(0≤x≤2π),向量
OP
a
=(1,0)方向的射影为y(O为坐标原点),则y关于x的函数y=f(x)的图象是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x(x-2),则不等式xf(x)>0的解集为(  )
A、(-2,0)∪(0,2)
B、(-∞,-2)∪(0,2)
C、(-2,0)∪(2,+∞)
D、(-∞,-2)∪(2,+∞)

查看答案和解析>>

同步练习册答案