精英家教网 > 高中数学 > 题目详情
已知四面体ABCD的所有棱长均为
6
,顶点A、B、C在半球的底面内,顶点D在半球球面上,且在半球底面上的射影为半球球心,则此半球的体积是
 
考点:球的体积和表面积
专题:空间位置关系与距离
分析:由题意求出正四面体的高,就是球的半径,然后求出球的体积.
解答: 解:由题意正四面体ABCD的所有棱长均为
6
,顶点A、B、C在半球的底面内,顶点D在半球面上,且D点在半球底面上的射影为半球的球心,可知正四面体的高就是球的半径,
所以底面ABC的中心到顶点A的距离:
2
3
×
3
2
×
6
=
2

所以球的半径为:
(
6
)2-(
2
)2
=2

所以半球的体积为:
2
3
π×23=
16
3
π

故答案为:
16π
3
点评:本题考查球的内接体,球的半径与球的体积的求法,考查空间想象能力与计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等比数列{an}单调递增,a1+a4=9,a2•a3=8,bn=log2an
(Ⅰ)求an
(Ⅱ)若Tn=
1
b2b3
+
1
b3b4
+…+
1
bnbn+1
>0.99.求n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是等差数列{an}的前n项和,若a3=7,S12>0,S13<0,则下列命题不正确的是(  )
A、-2<d<-
7
4
B、a1可能为整数
C、a6>0,a7<0
D、在Sn中S6的值最大

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin(2ωx-
π
3
)+b,且该函数图象的对称中心到对称轴的最小距离为
π
4
,且当x∈[0,
π
3
]时,f(x)的最大值为1.
(1)求f(x)的函数的解析式;
(2)求f(x)的单调递减区间;
(3)若f(x)-3≤m≤f(x)+3在[0,
π
3
]上恒成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x2,x≥0
2x,x<0
,则
1
-1
f(x)dx的值为(  )
A、
1
-1
x2dx
B、
1
-1
2xdx
C、
0
-1
x2dx+
1
0
2xdx
D、
0
-1
2xdx+
1
0
x2dx

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A′B′C′D′中,点E在A′B上,点F在B′D′上,且BE=B′F,求证:EF∥平面BCC′B′.

查看答案和解析>>

科目:高中数学 来源: 题型:

e1
e2
为一组基底,
OA
=-2
e1
-2
e2
OB
=m
e2
OC
=n
e1
,如果A、B、C三点共线,则
1
m
-
1
n
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC中,O是BC的中点,AB=AC,AO=2OC=2.将△BAO沿AO折起,使B点与图中B'点重合.
(Ⅰ)求证:AO⊥平面B′OC;
(Ⅱ)当三棱锥B'-AOC的体积取最大时,求二面角A-B′C-O的余弦值;
(Ⅲ)在(Ⅱ)的条件下,试问在线段B′A上是否存在一点P,使CP与平面B′OA所成的角的正弦值为
2
3
?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=-x2+4x-2在区间[0,3]上最大值,最小值分别为(  )
A、2和1B、2和-1
C、1和-2D、2和-2

查看答案和解析>>

同步练习册答案