精英家教网 > 高中数学 > 题目详情
(本小题满分12分)如图所示,平面平面是等边三角形,是矩形,的中点,的中点,与平面角.
(1)求证:平面
(2)若,求二面角的度数;
(3)当的长是多少时,点到平面的距离为?并说明理由
(1)证明见解析
(2)
(3)的长为时,点到平面的距离为
(1)证明.:如图所示,

是等边三角形,
又平面平面且相交于
平面          ……………3分
(2)连结,则在平面的射影
与平面所成的角,

中:
中:
,即
在平面内的射影,
是二面角的平面角.
中,     …………………8分
故所求二面角的度数为.
(3)连结,点到平面的距离即为三棱锥的高.

,则

的长为时,点到平面的距离为.      …………12分
注:本题也可用向量法解决,具体解法略
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题13分) 如图所示, PQ为平面的交线, 已知二面角为直二面角,  , ∠BAP=45°.

(1)证明: BCPQ;
(2)设点C在平面内的射影为点O, 当k取何值时, O在平面ABC内的射影G恰好为△ABC的重心?
(3)当时, 求二面角BACP的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点。
(Ⅰ)求证:AB1⊥面A1BD;
(Ⅱ)求点C到平面A1BD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是正方形,侧棱中点,作

(1)求PF:FB的值
(2)求平面与平面所成的锐二面角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)在直四棱住中(侧  棱与底面垂直的四棱柱),,底面是边长为的正方形,分别是棱的中点

(1)求证:平面平面
(2)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AB=BC,∠ABC=90°,D为AC中点.
(1)求证:BD⊥AC1
(2)若AB=,AA1=,求AC1与平面ABC所成的角.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是互不相同的空间直线,是不重合的平面,则下列命题中为真命题的是( )
A.若∥β,,则∥nB.若∥β,则⊥β
C.若⊥β,,则⊥βD.若⊥n,m⊥n,则∥m

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知在四面体中,分别是的中点,若
所成的角的大小为。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题


把正方形ABCD沿对角线AC折起,当A、B  C、D四点为顶点的三棱锥体积最大时,直线BD与平面ABC所成的角的大小为    

查看答案和解析>>

同步练习册答案