精英家教网 > 高中数学 > 题目详情
15.汽车是碳排放量比较大的行业之一,欧盟规定,从2012年开始,将对CO2排放量超过130g/km的不达标M1型新车进行惩罚,某检测单位对甲、乙两类M1型品牌车各抽取5辆进行CO2排放量检测,记录如表(单位:g/km):
80110135135140
100xy125155
经测算发现,两种品牌车CO2排放量的平均值相等,
(1)求x与y的函数关系式,并求出当x,y分别为何值时,乙品牌汽车CO2排放量的稳定性最好?
(2)在(1)的条件下,为了跟踪检测两种品牌汽车的质量稳定性,将在两种品牌汽车中各抽取2辆车进行长期跟踪监测,设抽取的4辆车中CO2排放量不达标的数量为X,求X的概率分布和数学期望.

分析 (1)由平均数═120求x,再求方差比较可得稳定性;
(2)由已知得X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列及数学期望.

解答 解:(1)∵由$\overline{{x}_{甲}}$=$\frac{80+110+135+135+140}{5}$=120,
∴$\overline{{x}_{乙}}$=$\frac{100+x+y+125+155}{5}$=120,可得:y=220-x,
∴S2=$\frac{1}{5}$[(80-120)2+(110-120)2+(135-120)2+(135-120)2+(140-120)2]=310;
S2=$\frac{1}{5}$[(100-120)2+(x-120)2+(y-120)2+(125-120)2+(155-120)2]=330+$\frac{2[(x-110)^{2}+100]}{5}$;
∴当x=110,y=110时,乙品牌汽车CO2排放量的稳定性最好.
(2)由已知得X的可能取值为0,1,2,3.
P(X=0)=$\frac{{C}_{2}^{2}}{{C}_{5}^{2}}×\frac{{C}_{4}^{2}}{{C}_{5}^{2}}$=$\frac{3}{50}$
P(X=1)=$\frac{{C}_{2}^{1}{C}_{3}^{1}}{{C}_{5}^{2}}×\frac{{C}_{4}^{2}}{{C}_{5}^{2}}$+$\frac{{C}_{2}^{2}}{{C}_{5}^{2}}×\frac{{C}_{4}^{1}{C}_{1}^{1}}{{C}_{5}^{2}}$=$\frac{11}{50}$
P(X=2)=$\frac{{C}_{3}^{2}}{{C}_{5}^{2}}×\frac{{C}_{4}^{2}}{{C}_{5}^{2}}$+$\frac{{C}_{2}^{1}{C}_{3}^{1}}{{C}_{5}^{2}}×\frac{{C}_{4}^{1}}{{C}_{5}^{2}}$=$\frac{21}{50}$,
P(X=3)=$\frac{{C}_{3}^{2}}{{C}_{5}^{2}}×\frac{{C}_{4}^{1}}{{C}_{5}^{2}}$=$\frac{6}{50}$;
则X的分布列为:

X 0 1 2 3
 P $\frac{3}{50}$ $\frac{20}{50}$ $\frac{21}{50}$$\frac{6}{50}$
E(X)=0×$\frac{3}{50}$+1×$\frac{20}{50}$+2×$\frac{21}{50}$+3×$\frac{6}{50}$=$\frac{8}{5}$.

点评 本题考查了数据的分析与应用,同时考查了古典概型在实际问题中的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.(文)如图矩形ABCD所在的平面与三角形CDE所在的平面交于CD,AE⊥平面CDE.
求证:
(1)AB∥平面CDE;
(2)CD⊥平面ADE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知角α的终边与单位圆的交点是P(x0,y0
(1)若x0=-$\frac{1}{2}$,y0=$\frac{\sqrt{3}}{2}$,且α∈(0,2π),求角α;  
(2)若x0>0,且sinα=$\frac{4}{5}$,求tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=log2(x+1),当点(x,y)在的y=f(x)图象上运动时,点($\frac{x}{3},\;\frac{y}{2}$)是y=g(x)图象上的点.
(1)求y=g(x)的表达式;
(2)当g(x)≥f(x)时,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,a,b,c分别是角A,B,C的对边,且bcosC+ccosB=2acosB.
(I)求角B的大小;
(II)若函数f(x)=2cos2x+sin(2x+B)+sin(2x-B)-1,x∈R.
(i)求函数f(x)的单调递减区间;
(ii)求函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某学校在五四青年节举办十佳歌手赛.如图是七位评委为某选手打出的分数的茎叶图(茎表示十位上的数字,叶表示个位上的数字),去掉一个最高分和一个最低分后,所剩数据的平均数与方差分别为(  )
A.83; 1.6B.85;  1.5C.85;  1.6D.86; 1.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设向量$\vec a$=(2,-1),$\vec b$=(-3,5),若表示向量3$\vec a$,4$\vec b$-$\vec a$,2$\vec c$的有向线段首尾相接能构成三角形,则向量$\vec c$=(  )
A.(4,9)B.(-4,-9)C.(4,-9)D.(-4,9)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.等差数列{an}的前三项为x-1,x+1,2x+3,则x=0;数列的通项公式an=2n-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示,则f(x)的单调递增区间为(  )
A.[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$](k∈Z)B.[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z)
C.[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$](k∈Z)D.[kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$](k∈Z)

查看答案和解析>>

同步练习册答案