精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+cx+d(a≠0)是R上的奇函数,当x=1时f(x)取得极值-2,
(1)求f(x)的单调区间和极大值;
(2)证明对任意x1,x2∈(-1,1),不等式| f(x1)-f(x2)|<4恒成立。
解:(1)由奇函数的定义,应有,x∈R,

∴d=0,
因此,
由条件f(1)=-2为f(x)的极值,必有f′(1)=0,
,解得a=1,c=-3,
因此,
时,f′(x)>0,故f(x)在单调区间上是增函数;
时,f′(x)<0,故f(x)在单调区间(-1,1)上是减函数;
时,f′(x)>0,故f(x)在单调区间上是增函数;
所以,f(x)在x=-1处取得极大值,极大值为f(-1)=2。
(2)由(1)知,是减函数,
且 f(x)在[-1,1]上的最大值M=f(-1)=2,f(x)在[-1,1]上的最小值m=f(1)=-2,
所以,对任意的
恒有
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案