精英家教网 > 高中数学 > 题目详情
6.方程sin2x=sinx在区间(0,2π)内的解的个数是3.

分析 方程即sinx=0或cosx=$\frac{1}{2}$,结合正弦函数、余弦函数的图象以及x∈(0,2π),分别求得x的值,可得结论

解答 解:方程sin2x=sinx,即2sinxcosx=sinx,即 sinx=0或cosx=$\frac{1}{2}$.
由sinx=0,x∈(0,2π),可得x=π;由cosx=$\frac{1}{2}$,x∈(0,2π),可得x=$\frac{π}{3}$或 x=$\frac{5π}{3}$.
综上可得,方程sin2x=sinx在区间(0,2π)内的解的个数是3,
故答案为:3.

点评 本题主要考查三角方程的解法,正弦函数、余弦函数的图象,体现了转化、分类讨论的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=1-x+lnx.
(1)求函数在点x=2处的切线方程;
(2)对任意x∈(0,+∞),f(x)≤0恒成立;
(3)证明:当n∈N+时,不等式($\frac{1}{n}$)n+($\frac{2}{n}$)n+…+($\frac{n-1}{n}$)n+($\frac{n}{n}$)n<$\frac{e}{e-1}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在一次突击检查中,某质检部门对某超市A、B、C、D,共4个品牌的食用油进行了检测,其中A品牌抽检到2个不合格的批次,另外三个品牌均各抽检到1个批次.
(1)若从这这4个品牌共5个批次的食用油中任选3个批次进行某项检测,求抽取的3个批次的食用油至少有一个是A品牌的概率.
(2)若对这4个品牌共5个批次的食用油进行综合检测,其检测结果如下(综合评估满分为10分):
品牌A1A2BCD
得分888.89.69.8
若检测的这5个批次食用油得分的平均值为a,从这5个批次中随机抽取2个,记这2个批次食用油中得分超过a的个数为ξ.求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在直角梯形ABCO中,OA∥BC,OA⊥OC,在OA,BC边上分别有两点P,Q,若PQ平分该梯形的面积,求证:直线PQ必过一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.长时间用手机上网严重影响着学生的健康,某校为了解A,B两班学生手机上网的时长,分别从这两个班中随机抽取6名同学进行调查,将他们平均每周手机上网时长作为样本数据,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).如果学生平均每周手机上网的时长超过21小时,则称为“过度用网”.
(Ⅰ)请根据样本数据,分别估计A,B两班的学生平均每周上网时长的平均值;
(Ⅱ)从A班的样本数据中有放回地抽取2个数据,求恰有1个数据为“过度用网”的概率;
(Ⅲ)从A班、B班的样本中各随机抽取2名学生的数据,记“过度用网”的学生人数为ξ,写出ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.为备战2016年奥运会,甲、乙两位射击选手进行了强化训练,现分别从他们的强化训练期间的若干次平均成绩中随机抽取8次,记录如下:
甲:8.3,9.0,7.9,7.8,9.4,8.9,8.4,8.3;
乙:9.2,9.5,8.0,7.5,8.2,8.1,9.0,8.5.
(1)现要从中选派一人参见奥运会封闭集训,从统计学角度,你认为派哪位选手参加合理?简单说明理由;
(2)若将频率视为概率,对选手乙在今后的三次比赛成绩进行预测,记这三次成绩中不低于8.5分的次数为ξ,求ξ的分布列及均值E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图1,已知正方体ABCD-A1B1C1D1的棱长为a,动点M,N,Q分别在线段AD1,B1C,C1D1上,当三棱锥Q-BMN的俯视图如图2所示,三棱锥Q-BMN正视图的面积等于(  )
A.$\frac{1}{2}{a}^{2}$B.$\frac{1}{4}$a2C.$\frac{\sqrt{2}}{4}{a}^{2}$D.$\frac{\sqrt{3}}{4}$a2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若cos(2α+$\frac{π}{6}$)=$\frac{4}{5}$,则sin(α+$\frac{π}{12}$)=$±\frac{\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三棱柱ABC-1B1C1中,已知AB⊥侧面BB1CC1,BC=$\sqrt{2}$,AB=BB1=2,∠BCC1=$\frac{π}{4}$,点E为棱BB1的中点
(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)求点E到平面ACC1的距离.

查看答案和解析>>

同步练习册答案