1£®³¤Ê±¼äÓÃÊÖ»úÉÏÍøÑÏÖØÓ°Ïì×ÅѧÉúµÄ½¡¿µ£¬Ä³Ð£ÎªÁ˽âA£¬BÁ½°àѧÉúÊÖ»úÉÏÍøµÄʱ³¤£¬·Ö±ð´ÓÕâÁ½¸ö°àÖÐËæ»ú³éÈ¡6Ãûͬѧ½øÐе÷²é£¬½«ËûÃÇÆ½¾ùÿÖÜÊÖ»úÉÏÍøÊ±³¤×÷ΪÑù±¾Êý¾Ý£¬»æÖƳɾ¥Ò¶Í¼ÈçͼËùʾ£¨Í¼Öеľ¥±íʾʮλÊý×Ö£¬Ò¶±íʾ¸öλÊý×Ö£©£®Èç¹ûѧÉúƽ¾ùÿÖÜÊÖ»úÉÏÍøµÄʱ³¤³¬¹ý21Сʱ£¬Ôò³ÆÎª¡°¹ý¶ÈÓÃÍø¡±£®
£¨¢ñ£©Çë¸ù¾ÝÑù±¾Êý¾Ý£¬·Ö±ð¹À¼ÆA£¬BÁ½°àµÄѧÉúƽ¾ùÿÖÜÉÏÍøÊ±³¤µÄƽ¾ùÖµ£»
£¨¢ò£©´ÓA°àµÄÑù±¾Êý¾ÝÖÐÓзŻصسéÈ¡2¸öÊý¾Ý£¬ÇóÇ¡ÓÐ1¸öÊý¾ÝΪ¡°¹ý¶ÈÓÃÍø¡±µÄ¸ÅÂÊ£»
£¨¢ó£©´ÓA°à¡¢B°àµÄÑù±¾Öи÷Ëæ»ú³éÈ¡2ÃûѧÉúµÄÊý¾Ý£¬¼Ç¡°¹ý¶ÈÓÃÍø¡±µÄѧÉúÈËÊýΪ¦Î£¬Ð´³ö¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍûE¦Î£®

·ÖÎö £¨¢ñ£©Çó³öA£¬B°àÑù±¾Êý¾ÝµÄƽ¾ùÖµ£¬¹À¼ÆA£¬BÁ½°àµÄѧÉúƽ¾ùÿÖÜÉÏÍøÊ±³¤µÄƽ¾ùÖµ£»
£¨¢ò£©´ÓA°àµÄÑù±¾Êý¾ÝÖÐÓзŻصسéÈ¡2¸öÊý¾Ý£¬Îª¡°¹ý¶ÈÓÃÍø¡±µÄ¸ÅÂÊÊÇ$\frac{1}{3}$£¬´Ó¶øÇóÇ¡ÓÐ1¸öÊý¾ÝΪ¡°¹ý¶ÈÓÃÍø¡±µÄ¸ÅÂÊ£»
£¨¢ó£©È·¶¨¦ÎµÄȡֵ£¬Çó³öÏàÓ¦µÄ¸ÅÂÊ£¬¼´¿Éд³ö¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍûE¦Î£®

½â´ð ½â£º£¨¢ñ£©A°àÑù±¾Êý¾ÝµÄƽ¾ùֵΪ$\frac{1}{6}$£¨9+11+13+20+24+37£©=19£¬
Óɴ˹À¼ÆA°àѧÉúÿÖÜÆ½¾ùÉÏÍøÊ±¼ä19Сʱ£»
B°àÑù±¾Êý¾ÝµÄƽ¾ùֵΪ$\frac{1}{6}$£¨11+12+21+25+27+36£©=22£¬
Óɴ˹À¼ÆB°àѧÉúÿÖÜÆ½¾ùÉÏÍøÊ±¼ä22Сʱ£®                  ¡­£¨2·Ö£©
£¨¢ò£©ÒòΪ´ÓA°àµÄ6¸öÑù±¾Êý¾ÝÖÐËæ»ú³éÈ¡1¸öµÄÊý¾Ý£¬Îª¡°¹ý¶ÈÓÃÍø¡±µÄ¸ÅÂÊÊÇ$\frac{1}{3}$£¬
ËùÒÔ´ÓA°àµÄÑù±¾Êý¾ÝÖÐÓзŻصijéÈ¡2¸öµÄÊý¾Ý£¬Ç¡ÓÐ1¸öÊý¾ÝΪ¡°¹ý¶ÈÓÃÍø¡±µÄ¸ÅÂÊΪP=${C}_{2}^{1}•\frac{1}{3}•\frac{2}{3}$¨T£®                                    ¡­£¨5·Ö£©
£¨¢ó£©¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬4£®
P£¨¦Î=0£©=$\frac{{C}_{4}^{2}{C}_{3}^{2}}{{C}_{6}^{2}{C}_{6}^{2}}$=$\frac{2}{25}$£¬P£¨¦Î=1£©=$\frac{{C}_{4}^{1}{C}_{2}^{1}{C}_{3}^{2}+{C}_{4}^{2}{C}_{3}^{1}{C}_{3}^{1}}{{C}_{6}^{2}{C}_{6}^{2}}$=$\frac{26}{75}$£¬P£¨¦Î=2£©=$\frac{{C}_{2}^{2}{C}_{3}^{2}+{C}_{4}^{2}{C}_{3}^{2}+{C}_{4}^{1}{C}_{2}^{1}{C}_{3}^{1}{C}_{3}^{1}}{{C}_{6}^{2}{C}_{6}^{2}}$=$\frac{31}{75}$£¬
P£¨¦Î=3£©=$\frac{{C}_{2}^{2}{C}_{3}^{2}{C}_{3}^{1}+{C}_{4}^{1}{C}_{2}^{1}{C}_{3}^{2}}{{C}_{6}^{2}{C}_{6}^{2}}$=$\frac{11}{75}$£¬P£¨¦Î=4£©=$\frac{{C}_{2}^{2}{C}_{3}^{2}}{{C}_{6}^{2}{C}_{6}^{2}}$=$\frac{1}{75}$£®
¦ÎµÄ·Ö²¼ÁÐÊÇ£º

¦Î01234
P$\frac{2}{25}$$\frac{26}{75}$$\frac{31}{75}$$\frac{11}{75}$$\frac{1}{75}$
E¦Î=0¡Á$\frac{2}{25}$+1¡Á$\frac{26}{75}$+2¡Á$\frac{31}{75}$+3¡Á$\frac{11}{75}$+4¡Á$\frac{1}{75}$=$\frac{5}{3}$£®            ¡­£¨13·Ö£©

µãÆÀ ±¾Ì⿼²éÁËÆ½¾ùÊý¼ÆË㹫ʽ¼°¸ÅÂʼÆË㣬ÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ¸ÅÂÊ·Ö²¼¼°ÆÚÍûÖµµÄÇó½â£¬¶Á¶®¾¥Ò¶Í¼µÄÊý¾ÝÊǹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÔÚËÄÀâ×¶P-ABCDÖУ¬µ×ÃæËıßÐÎABCDÖУ¬AB=AD=2$\sqrt{3}$£¬CD=BC=2£¬PA=2£¬AB¡ÍBC£¬PA¡ÍCD£¬ÃæPAB¡ÍÃæABCD£®
£¨1£©Ö¤Ã÷£ºPC¡ÍBD£»
£¨2£©Çó¶þÃæ½ÇB-PC-DµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬ÔÚÕýÈýÀâÖùABC=A1B1C1£¨²àÀâ´¹Ö±ÓÚµ×Ãæ£¬ÇÒµ×ÃæÊÇÕýÈý½ÇÐΣ©ÖУ¬AC=CC1=6£¬MÊÇÀâCC1ÉÏÒ»µã£®
£¨1£©ÈôM¡¢N·Ö±ðÊÇCC1¡¢ABµÄÖе㣬ÇóÖ¤£ºCN¡ÎÆ½ÃæAB1M1£»
£¨2£©ÈôMÊÇCC1ÉÏ¿¿½üµãC1ÉϵÄÒ»¸öÈýµÈ·Öµã£¬Çó¶þÃæ½ÇA1-AM-B1µÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÕýÏîµÈ±ÈÊýÁÐ{bn}£¨n¡ÊN+£©ÖУ¬¹«±Èq£¾1£¬b3+b5=40£¬b3b5=256£¬an=log2bn+2£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{an}ÊǵȲîÊýÁУ»
£¨2£©Èôcn=$\frac{1}{{a}_{n}•{a}_{n+1}}$£¬ÇóÊýÁÐ{cn}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=2sin£¨¦Øx£©£¨ÆäÖг£Êý¦Ø£¾0£©£¬Èô´æÔÚx1¡Ê[-$\frac{2¦Ð}{3}$£¬0]£¬x2¡Ê£¨0£¬$\frac{¦Ð}{4}$]£¬Ê¹f£¨x1£©=f£¨x2£©£¬Ôò¦ØµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®£¨$\frac{3}{2}$£¬4£©B£®£¨$\frac{3}{2}$£¬+¡Þ£©C£®£¨4£¬+¡Þ£©D£®£¨0£¬$\frac{3}{2}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®·½³Ìsin2x=sinxÔÚÇø¼ä£¨0£¬2¦Ð£©ÄڵĽâµÄ¸öÊýÊÇ3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=£¨a-1£©x-ax3ÔÚ[-1£¬1]µÄ×îСֵΪ-1£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[-1£¬4]B£®[-$\frac{1}{2}$£¬4]C£®[4£¬+¡Þ£©D£®[-$\frac{1}{3}$£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Éè¦Á¡Ê£¨0£¬$\frac{¦Ð}{2}$£©ÇÒtan¦Á=$\sqrt{2}$-1£¬f£¨x£©=x2•tan2¦Á+x•sin£¨2¦Á+$\frac{¦Ð}{4}$£©£¬ÊýÁÐ{an}ÖУ¬a1=$\frac{1}{2}$£¬an+1=f£¨an£©£®
£¨1£©»¯¼òf£¨x£©£»
£¨2£©ÇóÖ¤£ºan+1£¾an£»
£¨3£©ÇóÖ¤£º1£¼$\frac{1}{{a}_{1}+1}$+$\frac{1}{{a}_{2}+1}$+¡­+$\frac{1}{{a}_{n}+1}$£¼2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®º¯Êýf£¨x£©=x3-3x£¬x¡Ê[0£¬2]µÄ×îСֵÊÇ-2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸