| A. | ($\frac{3}{2}$,4) | B. | ($\frac{3}{2}$,+∞) | C. | (4,+∞) | D. | (0,$\frac{3}{2}$) |
分析 由函数的奇偶性的定义判断出函数f(x)是奇函数,再由题意和函数的周期公式列出不等式,求出ω的取值范围.
解答 解:由题意知,函数f(x)=2sinωx是奇函数,![]()
因为存在x1∈[-$\frac{2π}{3}$,0],x2∈(0,$\frac{π}{4}$],
使得f(x1)=f(x2),如图
所以由图象得到函数f(x)的周期T=$\frac{2π}{ω}$$<\frac{2π}{3}$×2=$\frac{4π}{3}$,
解得ω>$\frac{3}{2}$,
则ω的取值范围为($\frac{3}{2}$,+∞),
故选:B.
点评 本题考查正弦函数的周期性,以及函数的奇偶性的定义,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0<k<$\frac{7}{15}$ | B. | 0<k<$\frac{8}{15}$ | C. | 0<k<$\frac{15}{31}$ | D. | 0<k<$\frac{16}{31}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | h=5.6+4.8sinθ | B. | h=5.6+4.8cosθ | ||
| C. | h=5.6+4.8cos(θ+$\frac{π}{2}$) | D. | h=5.6+4.8sin(θ-$\frac{π}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com