精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=2sin(ωx)(其中常数ω>0),若存在x1∈[-$\frac{2π}{3}$,0],x2∈(0,$\frac{π}{4}$],使f(x1)=f(x2),则ω的取值范围为(  )
A.($\frac{3}{2}$,4)B.($\frac{3}{2}$,+∞)C.(4,+∞)D.(0,$\frac{3}{2}$)

分析 由函数的奇偶性的定义判断出函数f(x)是奇函数,再由题意和函数的周期公式列出不等式,求出ω的取值范围.

解答 解:由题意知,函数f(x)=2sinωx是奇函数,
因为存在x1∈[-$\frac{2π}{3}$,0],x2∈(0,$\frac{π}{4}$],
使得f(x1)=f(x2),如图
所以由图象得到函数f(x)的周期T=$\frac{2π}{ω}$$<\frac{2π}{3}$×2=$\frac{4π}{3}$,
解得ω>$\frac{3}{2}$,
则ω的取值范围为($\frac{3}{2}$,+∞),
故选:B.

点评 本题考查正弦函数的周期性,以及函数的奇偶性的定义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2+ax-lnx(a∈R).
(Ⅰ)当a=0时,求f(x)的单调区间与极值;
(Ⅱ)令g(x)=f(x)-x2,若函数g(x)在x∈(0,e]的最小值为3,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在边长为2的正方形ABCD中,E是边AB的中点,将△ADE沿DE折起使得平面ADE⊥平面BCDE,F是折叠后AC的中点.求二面角E-AB-D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知定义在R上的函数f(x)满足f(x+1)=f(x),当x∈[0,1]时,f(x)=$\left\{\begin{array}{l}{2x,0≤x≤\frac{1}{2}}\\{2-2x,\frac{1}{2}<x≤1}\end{array}\right.$,定义f1(x)=f(x),f2(x)=f(2x),…,fn(x)=f(2n-1x),若直线y=k(x+1)与曲线y=f4(x)在x∈[0,1]上恰有16个交点,则k的取值范围是(  )
A.0<k<$\frac{7}{15}$B.0<k<$\frac{8}{15}$C.0<k<$\frac{15}{31}$D.0<k<$\frac{16}{31}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知非钝角三角形ABC中,∠B=60°,边AB减去BC的长等于AC边上的高,若sinC与-sinA分别是方程x2-mx+m2-$\frac{3}{4}$=0的两根,求实数m的值和角A,C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.长时间用手机上网严重影响着学生的健康,某校为了解A,B两班学生手机上网的时长,分别从这两个班中随机抽取6名同学进行调查,将他们平均每周手机上网时长作为样本数据,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).如果学生平均每周手机上网的时长超过21小时,则称为“过度用网”.
(Ⅰ)请根据样本数据,分别估计A,B两班的学生平均每周上网时长的平均值;
(Ⅱ)从A班的样本数据中有放回地抽取2个数据,求恰有1个数据为“过度用网”的概率;
(Ⅲ)从A班、B班的样本中各随机抽取2名学生的数据,记“过度用网”的学生人数为ξ,写出ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图为一个观览车示意图,该观览车圆半径为4.8m,圆上最低点与地面距离为0.8m,图中OA与地面垂直,以OA为始边,逆时针转动θ(θ>0)角到OB,设B点与地面距离为h,则h与θ的关系式为(  )
A.h=5.6+4.8sinθB.h=5.6+4.8cosθ
C.h=5.6+4.8cos(θ+$\frac{π}{2}$)D.h=5.6+4.8sin(θ-$\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设{an}是公比不为1的等比数列,其前n项和为Sn,若a4,a3,a5成等差数列,则$\frac{S_4}{S_2}$=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx-ax2-(1-2a)x(a>0).
(1)若?x>0,使得不等式f(x)>6a2-4a成立,求实数a的取值范围.
(2)设函数y=f(x)图象上任意不同的两点为A(x1,y1),B(x2,y2),线段AB的中点为C(x0,y0),记直线AB的斜率为k,证明:k>f′(x0).

查看答案和解析>>

同步练习册答案