精英家教网 > 高中数学 > 题目详情
11.已知非钝角三角形ABC中,∠B=60°,边AB减去BC的长等于AC边上的高,若sinC与-sinA分别是方程x2-mx+m2-$\frac{3}{4}$=0的两根,求实数m的值和角A,C的大小.

分析 画出图形,利用直角三角形的边角关系结合已知条件列出方程组,求解即可.

解答 解:设三角形ABC的AC边上的高为h,由∠B=60°,且三角形是非钝角三角形,
∴AB=$\frac{h}{sinA}$,BC=$\frac{h}{sinC}$,由题意可得,AB-BC=h,
∴$\frac{h}{sinA}-\frac{h}{sinC}=h$∴sinC-sinA=sinCsinA,
又sinC与-sinA分别是方程x2-mx+m2-$\frac{3}{4}$=0的两根,
∴sinC-sinA=m,与-sinCsinA=m2-$\frac{3}{4}$,可得$\frac{3}{4}$-m2=m,
解得m=$\frac{1}{2}$,(m=-$\frac{3}{2}$舍去)
sinCsinA=$\frac{1}{2}$,sinA(sinA+$\frac{1}{2}$)=$\frac{1}{2}$,
2sin2A+sinA-1=0,可得sinA=$\frac{1}{2}$,sinA=-1(舍去).
所以A=30°,C=90°.

点评 本题考查三角形的解法,三角函数与才的关系,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.函数f(x)=ex-ax+a(a∈R),其图象与x轴交于A(x1,0),B(x2,0)两点,且x1<x2
(1)求a的取值范围;
(2)证明:$f'({\sqrt{{x_1}{x_2}}})\;<0$(f′(x)为函数f(x)的导函数);
(3)设点C在函数y=f(x)的图象上,且△ABC为等腰直角三角形,记$\sqrt{\frac{{{x_2}-1}}{{{x_1}-1}}}$=t,求(a-1)(t-1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在长方体ABCD-A1B1C1D1中,已知棱长AB=$\sqrt{3}$,AA1=1,截面AB1C1D为正方形.
(1)求点B1到平面ABC1的距离;
(2)求二面角B-AC1-B1的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.“抢红包“的网络游戏给2015年的春节增添了一份趣味.”掐女红包“有多种玩法,小明参加一种接龙红包游戏:小明在红包里装了9元现金,然后发给朋友A,并给出金额所在区间[1,9],让A猜(所猜金额为整数元;下同),如果A猜中,A将获得红包里的金额;如果A未猜中,A将当前的红包转发给朋友B,同时给出金额所在区间[6,9],让B猜,如果B猜中,A和B可以评分红包里的金额;如果B未猜中,B要将当前的红包转发个朋友C,同时给出金额所在区间[8,9],让C猜,如果C猜中,A、B和C可以评分红包里的金额;如果C未猜中,红包里的资金将退回小明的账户.
(Ⅰ)求A恰好得到3元的概率;
(Ⅱ)设A所获得的金额为X元,求X的分布列及数学期望;
(Ⅲ)从统计学的角度而言,A所获得的金额是否超过B和C两人所获得的金额之和?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知递增的等差数列{an}的前n项和Sn,且a2、a4是函数f(x)=(x2-14x+46)ex的两个极值点,数列{bn}满足:点(bn,Tn)(n∈N*)在函数y=$\frac{3}{2}$x-$\frac{3}{2}$的图象上,其中Tn是数列{bn}的前n项和.
(1)求数列{an}和{bn}的通项公式;
(2)令cn=$\frac{{S}_{n}}{2n+3}$•bn,求证:$\frac{5}{6}$≤$\frac{1}{{c}_{1}}$+$\frac{1}{{c}_{2}}$+…+$\frac{1}{{c}_{n}}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=2sin(ωx)(其中常数ω>0),若存在x1∈[-$\frac{2π}{3}$,0],x2∈(0,$\frac{π}{4}$],使f(x1)=f(x2),则ω的取值范围为(  )
A.($\frac{3}{2}$,4)B.($\frac{3}{2}$,+∞)C.(4,+∞)D.(0,$\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{4}$+y2=1,O为坐标原点,直线l与椭圆C交于A,B两点,且∠AOB=90°.
(Ⅰ)若直线l平行于x轴,求△AOB的面积;
(Ⅱ)若直线l始终与圆x2+y2=r2(r>0)相切,求r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图,用一边长为$\sqrt{2}$的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将表面积为4π的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为$\frac{\sqrt{3}}{2}$+$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,在正四棱柱ABCD-A1B1C1D1中,AB=1,AA1=2,点M为CC1的中点,则点D1到平面BDM的距离为$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

同步练习册答案